Analyse et étude expérimentale de structures capillaires pour atténuer l’influence des forces magnéto-gravitaires sur le refroidissement en hélium liquide des futurs aimants supraconducteur HTS // Analysis and experimental study of capillary structures to
ABG-128687 | Thesis topic | |
2025-02-18 | Public/private mixed funding |
CEA Paris-Saclay Laboratoire Cryogénie et Stations d’Essais
Saclay
Analyse et étude expérimentale de structures capillaires pour atténuer l’influence des forces magnéto-gravitaires sur le refroidissement en hélium liquide des futurs aimants supraconducteur HTS // Analysis and experimental study of capillary structures to
- Energy
Energie, thermique, combustion, écoulements / Sciences pour l’ingénieur
Topic description
Avec la nécessité pour la physique de disposer de champs magnétiques de plus en plus élevés, le CEA est amené à développer et réaliser des aimants supraconducteurs qui permettront de produire des champs magnétiques de plus de 30 T. Le bobinage de ces électro-aimants est réalisé avec des matériaux supraconducteurs dont la résistance électrique est extrêmement faible aux températures cryogéniques (quelques Kelvins). Ils peuvent ainsi transporter de forts courants (>10 kA) tout en dissipant par effet Joule un minimum de chaleur. Le refroidissement à ces basses températures est obtenu grâce à l’utilisation d’hélium liquide. Or, l’hélium est diamagnétique. Ainsi les champs magnétiques vont induire des forces volumiques qui s’ajoutent ou s’opposent à la gravité au sein de l’hélium. Ces forces magnéto-gravitaires perturbent les phénomènes convectifs nécessaires au refroidissement des câbles supraconducteurs. Cela peut entrainer une élévation de leur température et une perte de leur état supraconducteur primordial pour leur bon fonctionnement. Afin de contourner ce phénomène, un système de refroidissement inédit en cryomagnétisme sera étudié. Ce système de refroidissement sera développé avec des caloducs dont le fonctionnement est basé sur les forces capillaires à priori indépendantes des forces magnéto-gravitaires induites par les forts champs magnétiques. Ces structures capillaires peuvent prendre plusieurs formes (micro-canaux, mousse, maille …), ainsi dans le cadre de la thèse ces différentes structures seront étudiées théoriquement puis expérimentalement, à la fois sans et en présence de forces magnétiques afin de déterminer les structures les plus adaptées aux aimants supraconducteurs du futur.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
As physics requires increasingly higher magnetic fields, CEA is called upon to develop and produce superconducting magnets capable of generating magnetic field of more than 30 T. The windings of these electromagnets are made from superconducting materials whose electrical resistance is extremely low at cryogenic temperatures (a few Kelvins). This enables them to carry high currents (>10 kA) while dissipating a minimum of heat by Joule effect. Cooling at these low temperatures is achieved using liquid helium. But helium is diamagnetic. Magnetic fields will therefore induce volumetric forces that add to or oppose gravity within the helium. These magneto-gravity forces disrupt the convective phenomena required to cool the superconducting magnet. This can lead to a rise in their temperature and a loss of their superconducting state, which is essential for their proper operation. In order to circumvent this phenomenon, a new cooling system never used in cryomagnetism will be studied. This cooling system will be developed using heat pipes whose operation is based on capillary forces that are theoretically independent of the magneto-gravity forces induced by strong magnetic fields. These capillary structures can take several forms (microchannels, foam, mesh, etc.). In the framework of the thesis these different structures will be studied theoretically and then experimentally, both with and without magnetic forces, in order to determine the most suitable structures for the future superconducting magnets.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Pôle fr : Direction de la Recherche Fondamentale
Département : Institut de recherche sur les lois fondamentales de l’univers
Service : Département des Accélérateurs, de Cryogénie et de Magnétisme
Laboratoire : Laboratoire Cryogénie et Stations d’Essais
Date de début souhaitée : 01-10-2025
Ecole doctorale : PHENIICS (PHENIICS)
Directeur de thèse : BAUDOUY Bertrand
Organisme : CEA
Laboratoire : DRF/IRFU/DACM/LCSE
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
As physics requires increasingly higher magnetic fields, CEA is called upon to develop and produce superconducting magnets capable of generating magnetic field of more than 30 T. The windings of these electromagnets are made from superconducting materials whose electrical resistance is extremely low at cryogenic temperatures (a few Kelvins). This enables them to carry high currents (>10 kA) while dissipating a minimum of heat by Joule effect. Cooling at these low temperatures is achieved using liquid helium. But helium is diamagnetic. Magnetic fields will therefore induce volumetric forces that add to or oppose gravity within the helium. These magneto-gravity forces disrupt the convective phenomena required to cool the superconducting magnet. This can lead to a rise in their temperature and a loss of their superconducting state, which is essential for their proper operation. In order to circumvent this phenomenon, a new cooling system never used in cryomagnetism will be studied. This cooling system will be developed using heat pipes whose operation is based on capillary forces that are theoretically independent of the magneto-gravity forces induced by strong magnetic fields. These capillary structures can take several forms (microchannels, foam, mesh, etc.). In the framework of the thesis these different structures will be studied theoretically and then experimentally, both with and without magnetic forces, in order to determine the most suitable structures for the future superconducting magnets.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Pôle fr : Direction de la Recherche Fondamentale
Département : Institut de recherche sur les lois fondamentales de l’univers
Service : Département des Accélérateurs, de Cryogénie et de Magnétisme
Laboratoire : Laboratoire Cryogénie et Stations d’Essais
Date de début souhaitée : 01-10-2025
Ecole doctorale : PHENIICS (PHENIICS)
Directeur de thèse : BAUDOUY Bertrand
Organisme : CEA
Laboratoire : DRF/IRFU/DACM/LCSE
Funding category
Public/private mixed funding
Funding further details
Presentation of host institution and host laboratory
CEA Paris-Saclay Laboratoire Cryogénie et Stations d’Essais
Pôle fr : Direction de la Recherche Fondamentale
Département : Institut de recherche sur les lois fondamentales de l’univers
Service : Département des Accélérateurs, de Cryogénie et de Magnétisme
Candidate's profile
Master 2 ou école d’ingénieur, avec des composantes en dynamique des fluides, thermodynamique. Intérêt pour les études expérimentales.
Apply
Close
Vous avez déjà un compte ?
Nouvel utilisateur ?
More information about ABG?
Get ABG’s monthly newsletters including news, job offers, grants & fellowships and a selection of relevant events…
Discover our members
MabDesign
Généthon
Aérocentre, Pôle d'excellence régional
MabDesign
ANRT
TotalEnergies
Groupe AFNOR - Association française de normalisation
ONERA - The French Aerospace Lab
CASDEN
Nokia Bell Labs France
CESI
Tecknowmetrix
Institut de Radioprotection et de Sureté Nucléaire - IRSN - Siège
ADEME
PhDOOC
Laboratoire National de Métrologie et d'Essais - LNE
Institut Sup'biotech de Paris
Ifremer
SUEZ