Caractérisation avancée des domaines ferroélectriques dans les couches minces à base de HfO2 // Advanced characterization of ferroelectric domains in hafnia-based thin films
ABG-129868
ADUM-63884 |
Thesis topic | |
2025-03-24 | Public/private mixed funding |
Université Paris-Saclay GS Physique
Gif sur yvette - France
Caractérisation avancée des domaines ferroélectriques dans les couches minces à base de HfO2 // Advanced characterization of ferroelectric domains in hafnia-based thin films
- Physics
hafnia, ferroélectriques, domaines, photoémission, PFM, synchrotron
hafnia, ferroelectric, domains, photoemission, PFM, synchrotron
hafnia, ferroelectric, domains, photoemission, PFM, synchrotron
Topic description
Les mémoires ferroélectriques à accès aléatoire (FeRAM en anglais) à base d'oxyde d'hafnium et de zirconium (HZO) sont intrinsèquement ultra-faibles en consommation grâce au mécanisme de changement de tension, au potentiel de mise à l'échelle du HZO en dessous de 10 nm et à la compatibilité CMOS complète. De plus, elles présentent une faible latence nécessaire à une grande variété d'applications de logique et de mémoire. La compréhension des mécanismes sous-jacents et de la cinétique du ‘switching' des domaines ferroélectriques est essentielle pour une conception intelligente des FeRAMs avec des performances optimales.
Cette thèse porte sur la caractérisation complète des domaines ferroélectriques (FE) dans des films HZO ultra-minces. L'étudiant utilisera plusieurs techniques d'imagerie de surface (microscopie à force piézoélectrique, PFM, microscopie électronique à basse énergie, LEEM, et microscopie électronique à photoémission de rayons X, PEEM) combinées à des méthodes avancées de caractérisation operando (détection résolue dans le temps couplée au rayonnement synchrotron). Ce projet marquera une avancée importante dans la recherche fondamentale des mécanismes de basculement de polarisation des couches FE ultra-minces à base d'hafnium, en élucidant les effets spécifiques de l'interface électrode métallique/couche FE dans le comportement électrostatique des condensateurs étudiés. Il permettra à terme une avancée significative dans le développement industriel des mémoires émergentes ferroélectriques, essentielles pour les applications d'intelligence artificielle (IA) à grande échelle.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Ferroelectric random access memories (FeRAM) based on hafnium zirconium oxide (HZO) are intrinsically ultra-low power thanks to the voltage switching mechanism, the scaling potential of HZO to below 10 nm and full CMOS compatibility. In addition, they demonstrate low latency necessary for a wide variety of edge logic and memory applications. Understanding the underlying mechanisms and kinetics of ferroelectric domains switching is essential for intelligent FeRAM design and optimal performance.
This thesis focuses on the comprehensive characterization of ferroelectric (FE) domains in ultra-thin HZO films. The student will use several surface imaging techniques (piezoelectric force microscopy, PFM, low energy electron microscopy, LEEM, and x-ray photoemission electron microscopy, PEEM) combined with advanced operando characterization methods (time-resolved detection coupled with synchrotron radiation) for this purpose. This project will mark an important progress on the fundamental research on the polarization switching mechanisms of ultra-thin hafnia-based FE layer, elucidating the specific effects of the metal electrode/FE layer interface in the electrostatic behaviour of the studied capacitors. It will ultimately allow a significant breakthrough on the industrial development of ferroelectric emerging memories, essential for large-scale artificial intelligence (AI) applications.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Début de la thèse : 01/10/2025
WEB : https://www.lensislab.com/projects
Cette thèse porte sur la caractérisation complète des domaines ferroélectriques (FE) dans des films HZO ultra-minces. L'étudiant utilisera plusieurs techniques d'imagerie de surface (microscopie à force piézoélectrique, PFM, microscopie électronique à basse énergie, LEEM, et microscopie électronique à photoémission de rayons X, PEEM) combinées à des méthodes avancées de caractérisation operando (détection résolue dans le temps couplée au rayonnement synchrotron). Ce projet marquera une avancée importante dans la recherche fondamentale des mécanismes de basculement de polarisation des couches FE ultra-minces à base d'hafnium, en élucidant les effets spécifiques de l'interface électrode métallique/couche FE dans le comportement électrostatique des condensateurs étudiés. Il permettra à terme une avancée significative dans le développement industriel des mémoires émergentes ferroélectriques, essentielles pour les applications d'intelligence artificielle (IA) à grande échelle.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Ferroelectric random access memories (FeRAM) based on hafnium zirconium oxide (HZO) are intrinsically ultra-low power thanks to the voltage switching mechanism, the scaling potential of HZO to below 10 nm and full CMOS compatibility. In addition, they demonstrate low latency necessary for a wide variety of edge logic and memory applications. Understanding the underlying mechanisms and kinetics of ferroelectric domains switching is essential for intelligent FeRAM design and optimal performance.
This thesis focuses on the comprehensive characterization of ferroelectric (FE) domains in ultra-thin HZO films. The student will use several surface imaging techniques (piezoelectric force microscopy, PFM, low energy electron microscopy, LEEM, and x-ray photoemission electron microscopy, PEEM) combined with advanced operando characterization methods (time-resolved detection coupled with synchrotron radiation) for this purpose. This project will mark an important progress on the fundamental research on the polarization switching mechanisms of ultra-thin hafnia-based FE layer, elucidating the specific effects of the metal electrode/FE layer interface in the electrostatic behaviour of the studied capacitors. It will ultimately allow a significant breakthrough on the industrial development of ferroelectric emerging memories, essential for large-scale artificial intelligence (AI) applications.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Début de la thèse : 01/10/2025
WEB : https://www.lensislab.com/projects
Funding category
Public/private mixed funding
Funding further details
Financement du CEA - CTBU (Contrat de thèse sur budget unité)*
Presentation of host institution and host laboratory
Université Paris-Saclay GS Physique
Institution awarding doctoral degree
Université Paris-Saclay GS Physique
Graduate school
564 Physique en Ile de France
Candidate's profile
Previous experience/skills on electron spectroscopy and/or image processing is not mandatory but highly desired. Strong grounding in solid state physics is essential.
Previous experience/skills on electron spectroscopy and/or image processing is not mandatory but highly desired. Strong grounding in solid state physics is essential.
Previous experience/skills on electron spectroscopy and/or image processing is not mandatory but highly desired. Strong grounding in solid state physics is essential.
2025-04-30
Apply
Close
Vous avez déjà un compte ?
Nouvel utilisateur ?
More information about ABG?
Get ABG’s monthly newsletters including news, job offers, grants & fellowships and a selection of relevant events…
Discover our members
ONERA - The French Aerospace Lab
Généthon
MabDesign
CESI
Groupe AFNOR - Association française de normalisation
Tecknowmetrix
ANRT
Institut Sup'biotech de Paris
Ifremer
Aérocentre, Pôle d'excellence régional
ADEME
ASNR - Autorité de sûreté nucléaire et de radioprotection - Siège
CASDEN
Laboratoire National de Métrologie et d'Essais - LNE
TotalEnergies
PhDOOC
Nokia Bell Labs France
SUEZ
MabDesign