Fiabilité des transistors GaN pour applications 5G millimétrique // Reliability of RF GaN transistors for 5G millimeter Wave applications
ABG-130785 | Thesis topic | |
2025-04-11 | Public/private mixed funding |
CEA Bordeaux Laboratoire des Transistors Avancés
Grenoble
Fiabilité des transistors GaN pour applications 5G millimétrique // Reliability of RF GaN transistors for 5G millimeter Wave applications
- Telecommunications
- Engineering sciences
Réseaux de communication, internet des objets, radiofréquences et antennes / Défis technologiques / Electronique et microélectronique - Optoélectronique / Sciences pour l’ingénieur
Topic description
Les composants en Nitrure de Gallium sont de très bons candidats pour les applications d’amplification de puissance aux fréquences millimétriques de type 5G (~30GHz), de par leur densité de puissance et leur efficacité énergétique. Cependant, ces technologies sont couramment intégrées sur des substrats en Carbure de Silicium, performants thermiquement mais chers et de faible diamètres. La technologie GaN/Si du CEA-LETI permet d’obtenir des performances à l’état de l’art mondial en bande Ka, avec des densités de puissance qui peuvent rivaliser avec les technologies GaN/SiC. Cette technologie basée sur des substrats Si 200mm est compatible avec les salles blanches Silicium, promettant de plus grands volumes disponibles tout en réduisant les coûts. De plus, les niveaux de back-end utilisés offrent des possibilités pour une intégration hétérogène dense avec des circuits digitaux, ouvrant la voie vers des circuits intégrés 3D hétérogènes.
Cependant, peu d’études existent à l’heure actuelle sur les mécanismes de dégradation propre à ce type de composants en utilisant des procédés de fabrication CMOS-compatibles: barrières avancées, grilles MIS SiN in-situ, contacts ohmiques. Il est indispensable de connaître ces effets afin d’une part de qualifier la technologie et d’autre part afin de mieux comprendre le fonctionnement du dispositif et ses éventuelles faiblesses/limitations.
Le but de ces travaux de thèse est d’étudier les phénomènes mémoires parasites ainsi que le vieillissement de ces transistors en conditions opérationnelles à l’aide de mesures DC & RF, liées à la physique du composant. Les transistors seront soumis à différentes conditions de stress électrique afin de modéliser les dérives de leurs paramètres DC & RF : mesures de pièges (BTI & DCTS), influence du procédé de fabrication et de la technologie de grille (Schottky vs MIS), de la barrière de confinement (GaN:C, back-barrier AlGaN, etc…). Des analyses de claquage de diélectrique (TDDB) seront effectués sur les grilles MIS, en condition DC & RF afin d’évaluer l’amélioration du temps de claquage en fonction de la fréquence du signal, de manière analogue aux diélectriques utilisés sur CMOS. Enfin, des stress électriques seront menés en conditions DC et RF (stress RF CW) afin d’évaluer et de modéliser le vieillissement des transistors en conditions opérationnelles.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Gallium Nitride components are very good candidates for power amplification at Millimeter Wave frequencies such as 5G (~30GHz), due to their power density and energy efficiency. However, these technologies are commonly integrated on Silicon Carbide substrates, which are thermally efficient but expensive and have small diameters. CEA-LETI's GaN/Si technology provides world-class performance in Ka band, with power densities competing with GaN/SiC technologies. These devices, fabricated on 200mm Si substrates, are compatible with Silicon clean rooms and promise greater available volumes and lower costs. Furthermore, the Silicon-like back-end levels offer possibilities for dense heterogeneous integration with digital circuits, paving the way towards heterogeneous RF Integrated Circuits (RFICs).
However, few studies exist nowadays on the degradation mechanisms tied to these specific components with CMOS-compatible process: advanced barriers, in-situ MIS gates, ohmic contacts, etc... It is mandatory to know and master these effects to qualify the technology as well as better understand the device weaknesses and limitations.
The goal of this PhD is to evaluate the parasitic memory effects as well as the transistor aging under operational conditions using DC and RF measurements, linked to the device physics. The transistors will be subjected to various electrical stress conditions to model their DC & RF degradation: trapping effects measurements (BTI, DCTS), influence of the process and gate technology (Schottky vs MIS), the electrical confinement inside the structure (GaN:C, AlGaN back-barrier, etc…). Time Dependent Dielectric Breakdown (TDDB) measurements will be made on MIS gates from DC to RF domain, to study the time to breakdown increase with input signal frequency, in a similar manner than gate dielectrics in CMOS devices. Finally, electrical stresses in DC and RF conditions (RF CW stresses) will be performed to evaluate and model the transistor degradation under operational conditions.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Pôle fr : Direction de la Recherche Technologique
Pôle en : Technological Research
Département : Département Composants Silicium (LETI)
Service : Service des Composants pour le Calcul et la Connectivité
Laboratoire : Laboratoire des Transistors Avancés
Date de début souhaitée : 01-10-2025
Ecole doctorale : Ecole Doctorale des Sciences Physiques et de l’Ingénieur
Directeur de thèse : SAYSSET-MALBERT Nathalie
Organisme : CNRS
Laboratoire : IMS Laboratory, UMR CNRS 5218
URL : https://www.linkedin.com/in/alexis-divay-rf/
URL : https://cea.hal.science/LETI/cea-04539880v1
Cependant, peu d’études existent à l’heure actuelle sur les mécanismes de dégradation propre à ce type de composants en utilisant des procédés de fabrication CMOS-compatibles: barrières avancées, grilles MIS SiN in-situ, contacts ohmiques. Il est indispensable de connaître ces effets afin d’une part de qualifier la technologie et d’autre part afin de mieux comprendre le fonctionnement du dispositif et ses éventuelles faiblesses/limitations.
Le but de ces travaux de thèse est d’étudier les phénomènes mémoires parasites ainsi que le vieillissement de ces transistors en conditions opérationnelles à l’aide de mesures DC & RF, liées à la physique du composant. Les transistors seront soumis à différentes conditions de stress électrique afin de modéliser les dérives de leurs paramètres DC & RF : mesures de pièges (BTI & DCTS), influence du procédé de fabrication et de la technologie de grille (Schottky vs MIS), de la barrière de confinement (GaN:C, back-barrier AlGaN, etc…). Des analyses de claquage de diélectrique (TDDB) seront effectués sur les grilles MIS, en condition DC & RF afin d’évaluer l’amélioration du temps de claquage en fonction de la fréquence du signal, de manière analogue aux diélectriques utilisés sur CMOS. Enfin, des stress électriques seront menés en conditions DC et RF (stress RF CW) afin d’évaluer et de modéliser le vieillissement des transistors en conditions opérationnelles.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Gallium Nitride components are very good candidates for power amplification at Millimeter Wave frequencies such as 5G (~30GHz), due to their power density and energy efficiency. However, these technologies are commonly integrated on Silicon Carbide substrates, which are thermally efficient but expensive and have small diameters. CEA-LETI's GaN/Si technology provides world-class performance in Ka band, with power densities competing with GaN/SiC technologies. These devices, fabricated on 200mm Si substrates, are compatible with Silicon clean rooms and promise greater available volumes and lower costs. Furthermore, the Silicon-like back-end levels offer possibilities for dense heterogeneous integration with digital circuits, paving the way towards heterogeneous RF Integrated Circuits (RFICs).
However, few studies exist nowadays on the degradation mechanisms tied to these specific components with CMOS-compatible process: advanced barriers, in-situ MIS gates, ohmic contacts, etc... It is mandatory to know and master these effects to qualify the technology as well as better understand the device weaknesses and limitations.
The goal of this PhD is to evaluate the parasitic memory effects as well as the transistor aging under operational conditions using DC and RF measurements, linked to the device physics. The transistors will be subjected to various electrical stress conditions to model their DC & RF degradation: trapping effects measurements (BTI, DCTS), influence of the process and gate technology (Schottky vs MIS), the electrical confinement inside the structure (GaN:C, AlGaN back-barrier, etc…). Time Dependent Dielectric Breakdown (TDDB) measurements will be made on MIS gates from DC to RF domain, to study the time to breakdown increase with input signal frequency, in a similar manner than gate dielectrics in CMOS devices. Finally, electrical stresses in DC and RF conditions (RF CW stresses) will be performed to evaluate and model the transistor degradation under operational conditions.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Pôle fr : Direction de la Recherche Technologique
Pôle en : Technological Research
Département : Département Composants Silicium (LETI)
Service : Service des Composants pour le Calcul et la Connectivité
Laboratoire : Laboratoire des Transistors Avancés
Date de début souhaitée : 01-10-2025
Ecole doctorale : Ecole Doctorale des Sciences Physiques et de l’Ingénieur
Directeur de thèse : SAYSSET-MALBERT Nathalie
Organisme : CNRS
Laboratoire : IMS Laboratory, UMR CNRS 5218
URL : https://www.linkedin.com/in/alexis-divay-rf/
URL : https://cea.hal.science/LETI/cea-04539880v1
Funding category
Public/private mixed funding
Funding further details
Presentation of host institution and host laboratory
CEA Bordeaux Laboratoire des Transistors Avancés
Pôle fr : Direction de la Recherche Technologique
Pôle en : Technological Research
Département : Département Composants Silicium (LETI)
Service : Service des Composants pour le Calcul et la Connectivité
Candidate's profile
Physique du semi-conducteur
Apply
Close
Vous avez déjà un compte ?
Nouvel utilisateur ?
More information about ABG?
Get ABG’s monthly newsletters including news, job offers, grants & fellowships and a selection of relevant events…
Discover our members
CASDEN
Généthon
Institut Sup'biotech de Paris
TotalEnergies
Tecknowmetrix
Groupe AFNOR - Association française de normalisation
SUEZ
PhDOOC
Laboratoire National de Métrologie et d'Essais - LNE
Nokia Bell Labs France
CESI
ONERA - The French Aerospace Lab
ADEME
ANRT
MabDesign
ASNR - Autorité de sûreté nucléaire et de radioprotection - Siège
Ifremer
MabDesign
Aérocentre, Pôle d'excellence régional