D-MODULES RÉGULIERS-SINGULIERS EN CARACTÉRISTIQUE POSITIVE ET MIXTE // REGULAR-SINGULAR D-MODULES IN POSITIVE AND MIXED CHARACTERISTIC.
ABG-131096
ADUM-63587 |
Thesis topic | |
2025-04-16 | Public funding alone (i.e. government, region, European, international organization research grant) |
Université de Montpellier
MONTPELLIER CEDEX 5 - France
D-MODULES RÉGULIERS-SINGULIERS EN CARACTÉRISTIQUE POSITIVE ET MIXTE // REGULAR-SINGULAR D-MODULES IN POSITIVE AND MIXED CHARACTERISTIC.
- Mathematics
Géométrie Algébrique, Géométrie Arithmétique, Corps non-Archimédiens, D-modules, Équations différentielles
Algebraic Geometry, Arithmetic Geometry, Non-archimedean fields, D-modules, Differential equations
Algebraic Geometry, Arithmetic Geometry, Non-archimedean fields, D-modules, Differential equations
Topic description
Un résultat classique et fondamental, dû à Riemann lui-même, dans la théorie des EDOs dans le domaine complexe énonce qu'une équation différentielle linéaire d'ordre deux sur $\mathbb{P}^1\setminus\{0,1,\infty\} $ est entièrement déterminé par son comportement ``sur les singularités'' $\{0,1,\infty\}$ une fois l'imposition de régularité faite. Un analogue des EDO dans $\mathbb{P}^1$, en géométrie algébrique de caractéristique positive, est le concept de $\mathcal D$-modules $\mathcal{O}$-cohérent, où $\mathcal D$ est l'anneau des opérateurs différentiels d'EGA IV. Ce projet souhaite étudier ces équations et, en passant, explorer les généralités entre la théorie des modules ${\mathcal D}$ en caractéristique positive et mixte ainsi que leurs groupes de Galois différentiels associés.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
A classical and fundamental result, due to Riemann himself, in the theory of ODEs in the complex domain states that a linear differential equations of order two on $\mathbb{P}^1\setminus\{0,1,\infty\}$ is entirely determined by its behaviour ``on the singularities'' $\{0,1,\infty\}$ once the imposition of regularity is made. One analogue of ODEs in $\\mathbb{P}^1$, in algebraic geometry of positive characteristic, is the concept of $\mathcal{O}$-coherent $\mathcal D$-modules, where $\mathcal D$ is the ring of differential operators of EGA IV. This project wishes to investigate these equations and, in doing so, explore generalities between the theory of ${\mathcal D}$-modules in positive and mixed characteristic as well as their associated differential Galois groups.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Début de la thèse : 01/09/2025
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
A classical and fundamental result, due to Riemann himself, in the theory of ODEs in the complex domain states that a linear differential equations of order two on $\mathbb{P}^1\setminus\{0,1,\infty\}$ is entirely determined by its behaviour ``on the singularities'' $\{0,1,\infty\}$ once the imposition of regularity is made. One analogue of ODEs in $\\mathbb{P}^1$, in algebraic geometry of positive characteristic, is the concept of $\mathcal{O}$-coherent $\mathcal D$-modules, where $\mathcal D$ is the ring of differential operators of EGA IV. This project wishes to investigate these equations and, in doing so, explore generalities between the theory of ${\mathcal D}$-modules in positive and mixed characteristic as well as their associated differential Galois groups.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Début de la thèse : 01/09/2025
Funding category
Public funding alone (i.e. government, region, European, international organization research grant)
Funding further details
Concours pour un contrat doctoral
Presentation of host institution and host laboratory
Université de Montpellier
Institution awarding doctoral degree
Université de Montpellier
Graduate school
166 I2S - Information, Structures, Systèmes
Candidate's profile
Bonne bases de géométrie algébrique. Bonne bases en Analyse complexe.
Solid knowledge of scheme-theoretic algebraic geometry and complex analysis.
Solid knowledge of scheme-theoretic algebraic geometry and complex analysis.
2025-04-25
Apply
Close
Vous avez déjà un compte ?
Nouvel utilisateur ?
More information about ABG?
Get ABG’s monthly newsletters including news, job offers, grants & fellowships and a selection of relevant events…
Discover our members
ANRT
Ifremer
Laboratoire National de Métrologie et d'Essais - LNE
PhDOOC
Aérocentre, Pôle d'excellence régional
Généthon
CASDEN
SUEZ
Groupe AFNOR - Association française de normalisation
MabDesign
TotalEnergies
ADEME
MabDesign
ONERA - The French Aerospace Lab
Tecknowmetrix
CESI
ASNR - Autorité de sûreté nucléaire et de radioprotection - Siège
Nokia Bell Labs France
Institut Sup'biotech de Paris