Capsule membrane rupture under strong flows
ABG-125219 | Master internship | 6 months | 600 |
2024-07-22 |
- Engineering sciences
- Materials science
- Digital
Employer organisation
Website :
Les activités de recherche du laboratoire BMBI concernent la Biomécanique et la Bioingénierie, plus particulièrement la Mécanique du Vivant et l’Ingénierie pour la Santé. La spécificité de BMBI est sa pluridisciplinarité qui se traduit par des projets de recherches interdisciplinaires associant les compétences en mécanique, physique, traitement du signal, biologie (cellulaire et moléculaire), biochimie, physiologie.
Description
Capsules are closed membranes made of polymers. They are increasingly used in cosmetics and pharmaceutics to encapsulate active agents in order to accomplish controlled delivery. For example, in medicine, they are used to transport and release cure or contrast agents to targeted sites within the human body. The delivery takes place either by mass transfer through the capsule membrane or by complete break-up of the entire capsule. Mass transfer from unbroken capsules have been extensively studied numerically at BMBI, see Refs [1-7]. The present project aims to model numerically the rupture of a capsule membrane when subjected to strong applied flows. Such event allows sudden and importance release of the capsule cargo, as reported experimentally in Ref. [8].
The student will participate in developing a new numerical method to model the rupture of the capsule membrane using physics-based approaches. The capsule will be modeled as a closed spring network, as done in Ref. [1], and the mechanism of brittle materials break-up will be implemented. The developed numerical method will be used to model the event of the capsules rupture as a function of the membrane elastic properties and the strength of the applied flow.
Duration: 5 months in the period from July to December 2024
References:
[1] C. Bielinski, L. Xia, G. Helbecque, B. Kaoui, Mass transfer from a sheared spherical rigid capsule, Physics of Fluids 34, 031902 (2022)
[2] C. Bielinski, B. Kaoui, Numerical method to characterise capsule membrane permeability for controlled drug delivery, International Journal for Numerical Methods in Biomedical Engineering, e3551 (2021)
[3] C. Bielinski, N. Le, B. Kaoui, Unsteady mass transfer from a core-shell cylinder in crossflow, Physical Review Fluids 6 (2), 023501 (2021)
[4] B. Kaoui, Algorithm to implement unsteady jump boundary conditions within the lattice Boltzmann method, The European Physical Journal E 43, 23 (2020)
[5] B. Kaoui, Computer simulations of drug release from a liposome into the bloodstream, European Physical Journal E 41 (2), 20 (2018)
[6] B. Kaoui, M. Lauricella, G. Pontrelli, Mechanistic modelling of drug release from multi-layer capsules, Computers in Biology and Medicine 93, 149 (2018)
[7] B. Kaoui, Flow and mass transfer around a core-shell reservoir, Physical Review E 95, 063310 (2017)
[8] A. Le Goff, B. Kaoui, G. Kurzawa, B. Haszon, A.-V. Salsac, Squeezing bio-capsules into a constriction: deformation till break-up, Soft Matter 13, 7644 (2017)
Profile
Etudiants du niveau Master 2 / Ingénieur.
Starting date
Vous avez déjà un compte ?
Nouvel utilisateur ?
Get ABG’s monthly newsletters including news, job offers, grants & fellowships and a selection of relevant events…
Discover our members
- ADEME
- SUEZ
- MabDesign
- Tecknowmetrix
- CASDEN
- Généthon
- Ifremer
- Nokia Bell Labs France
- TotalEnergies
- Groupe AFNOR - Association française de normalisation
- MabDesign
- ONERA - The French Aerospace Lab
- Institut Sup'biotech de Paris
- Institut de Radioprotection et de Sureté Nucléaire - IRSN - Siège
- Aérocentre, Pôle d'excellence régional
- CESI
- ANRT
- Laboratoire National de Métrologie et d'Essais - LNE
- PhDOOC