Approches logicielles et matérielles pour l'accéleration du traitement des matrices éparses de grande taille // Combined Software and Hardware Approaches for Large Scale Sparse Matrix Acceleration
ABG-127107 | Thesis topic | |
2024-11-22 | Public/private mixed funding |
CEA Université Grenoble Alpes Laboratoire Systèmes-sur-puce et Technologies Avancées
Grenoble
Approches logicielles et matérielles pour l'accéleration du traitement des matrices éparses de grande taille // Combined Software and Hardware Approaches for Large Scale Sparse Matrix Acceleration
- Engineering sciences
- Digital
Nouveaux paradigmes de calculs, circuits et technologies, dont le quantique / Défis technologiques / Electronique et microélectronique - Optoélectronique / Sciences pour l’ingénieur
Topic description
La physique computationnelle, l'intelligence artificielle ou l'analyse de graphes sont autant de domaines reposant sur le traitement de matrices creuses de grande taille. Ce sujet s'inscrit au cœur des enjeux liés au traitement efficace de telles matrices, en explorant une approche systémique, à la fois matérielle et logicielle.
Bien que le traitement des matrices creuses a été étudié d'un point de vue purement logiciel pendant des décennies, ces dernières années, de nombreux accélérateurs matériels dédiés et très spécifiques, ont été proposés pour les données éparses. Ce qui manque, c'est une vision globale de comment exploiter ces accélérateurs, ainsi que le matériel standard tel que les GPUs, pour résoudre efficacement un problème complet. Avant de résoudre un problème matriciel, il est courant d'effectuer un prétraitement de la matrice. Il peut s'agir de techniques visant à améliorer la stabilité numérique, à ajuster la forme de la matrice et à la diviser en sous-matrices plus petites (tuilage) qui peuvent être distribuées aux cœurs de traitement. Dans le passé, ce prétraitement supposait des cœurs de calcul homogènes. De nouvelles approches sont nécessaires pour tirer parti des cœurs hétérogènes, qui peuvent inclure des accélérateurs dédiés et des GPUs. Par exemple, il peut être judicieux de répartir les régions les moins denses sur des accélérateurs spécialisés et d'utiliser des GPUs pour les régions plus denses, bien que cela reste à démontrer. L'objectif de cette thèse est de proposer une vue d'ensemble du traitement des matrices éparses et d'analyser les techniques logicielles nécessaires pour exploiter les accélérateurs. Le candidat s'appuiera sur une plateforme multicœur existante basée sur des cœurs RISC-V et un GPU open-source pour développer un cadre complet et étudiera quelles stratégies sont capables d'exploiter au mieux le matériel disponible.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Computational physics, artificial intelligence and graph analytics are important compute problems which depend on processing sparse matrices of huge dimensions. This PhD thesis focuses on the challenges related to efficiently processing such sparse matrices, by applying a systematic software are hardware approach.
Although the processing of sparse matrices has been studied from a purely software perspective for decades, in recent years many dedicated, and very specific hardware, accelerators for sparse data have been proposed. What is missing is a vision of how to properly exploit these accelerators, as well as standard hardware such as GPUs, to efficiently solve a full problem. Prior to solving a matrix problem, it is common to perform pre-processing of the matrix. This can include techniques to improve the numerical stability, to adjust the form of the matrix, and techniques to divide it into smaller sub-matrices (tiling) which can be distributed to processing cores. In the past, this pre-processing has assumed homogenous compute cores. New approaches are needed, to take advantage of heterogeneous cores which can include dedicated accelerators and GPUs. For example, it may make sense to dispatch the sparsest regions to specialized accelerators and to use GPUs for the denser regions, although this has yet to be shown. The purpose of this PhD thesis is to take a broad overview of the processing of sparse matrices and to analyze what software techniques are required to exploit existing and future accelerators. The candidate will build on an existing multi-core platform based on RISC-V cores and an open-source GPU to develop a full framework and will study which strategies are able to best exploit the available hardware.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Pôle fr : Direction de la Recherche Technologique
Pôle en : Technological Research
Département : Département Systèmes et Circuits Intégrés Numériques (LIST)
Service : DSCIN
Laboratoire : Laboratoire Systèmes-sur-puce et Technologies Avancées
Date de début souhaitée : 01-09-2025
Ecole doctorale : Electronique, Electrotechnique, Automatique, Traitement du Signal (EEATS)
Directeur de thèse : ROUSSEAU Frédéric
Organisme : INPG
Laboratoire : Laboratoire TIMA
Bien que le traitement des matrices creuses a été étudié d'un point de vue purement logiciel pendant des décennies, ces dernières années, de nombreux accélérateurs matériels dédiés et très spécifiques, ont été proposés pour les données éparses. Ce qui manque, c'est une vision globale de comment exploiter ces accélérateurs, ainsi que le matériel standard tel que les GPUs, pour résoudre efficacement un problème complet. Avant de résoudre un problème matriciel, il est courant d'effectuer un prétraitement de la matrice. Il peut s'agir de techniques visant à améliorer la stabilité numérique, à ajuster la forme de la matrice et à la diviser en sous-matrices plus petites (tuilage) qui peuvent être distribuées aux cœurs de traitement. Dans le passé, ce prétraitement supposait des cœurs de calcul homogènes. De nouvelles approches sont nécessaires pour tirer parti des cœurs hétérogènes, qui peuvent inclure des accélérateurs dédiés et des GPUs. Par exemple, il peut être judicieux de répartir les régions les moins denses sur des accélérateurs spécialisés et d'utiliser des GPUs pour les régions plus denses, bien que cela reste à démontrer. L'objectif de cette thèse est de proposer une vue d'ensemble du traitement des matrices éparses et d'analyser les techniques logicielles nécessaires pour exploiter les accélérateurs. Le candidat s'appuiera sur une plateforme multicœur existante basée sur des cœurs RISC-V et un GPU open-source pour développer un cadre complet et étudiera quelles stratégies sont capables d'exploiter au mieux le matériel disponible.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Computational physics, artificial intelligence and graph analytics are important compute problems which depend on processing sparse matrices of huge dimensions. This PhD thesis focuses on the challenges related to efficiently processing such sparse matrices, by applying a systematic software are hardware approach.
Although the processing of sparse matrices has been studied from a purely software perspective for decades, in recent years many dedicated, and very specific hardware, accelerators for sparse data have been proposed. What is missing is a vision of how to properly exploit these accelerators, as well as standard hardware such as GPUs, to efficiently solve a full problem. Prior to solving a matrix problem, it is common to perform pre-processing of the matrix. This can include techniques to improve the numerical stability, to adjust the form of the matrix, and techniques to divide it into smaller sub-matrices (tiling) which can be distributed to processing cores. In the past, this pre-processing has assumed homogenous compute cores. New approaches are needed, to take advantage of heterogeneous cores which can include dedicated accelerators and GPUs. For example, it may make sense to dispatch the sparsest regions to specialized accelerators and to use GPUs for the denser regions, although this has yet to be shown. The purpose of this PhD thesis is to take a broad overview of the processing of sparse matrices and to analyze what software techniques are required to exploit existing and future accelerators. The candidate will build on an existing multi-core platform based on RISC-V cores and an open-source GPU to develop a full framework and will study which strategies are able to best exploit the available hardware.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Pôle fr : Direction de la Recherche Technologique
Pôle en : Technological Research
Département : Département Systèmes et Circuits Intégrés Numériques (LIST)
Service : DSCIN
Laboratoire : Laboratoire Systèmes-sur-puce et Technologies Avancées
Date de début souhaitée : 01-09-2025
Ecole doctorale : Electronique, Electrotechnique, Automatique, Traitement du Signal (EEATS)
Directeur de thèse : ROUSSEAU Frédéric
Organisme : INPG
Laboratoire : Laboratoire TIMA
Funding category
Public/private mixed funding
Funding further details
Presentation of host institution and host laboratory
CEA Université Grenoble Alpes Laboratoire Systèmes-sur-puce et Technologies Avancées
Pôle fr : Direction de la Recherche Technologique
Pôle en : Technological Research
Département : Département Systèmes et Circuits Intégrés Numériques (LIST)
Service : DSCIN
Candidate's profile
Apply
Close
Vous avez déjà un compte ?
Nouvel utilisateur ?
More information about ABG?
Get ABG’s monthly newsletters including news, job offers, grants & fellowships and a selection of relevant events…
Discover our members
- Groupe AFNOR - Association française de normalisation
- ADEME
- CASDEN
- Nokia Bell Labs France
- SUEZ
- Ifremer
- Aérocentre, Pôle d'excellence régional
- Institut de Radioprotection et de Sureté Nucléaire - IRSN - Siège
- TotalEnergies
- MabDesign
- Institut Sup'biotech de Paris
- Laboratoire National de Métrologie et d'Essais - LNE
- MabDesign
- Généthon
- ANRT
- CESI
- PhDOOC
- ONERA - The French Aerospace Lab
- Tecknowmetrix