Mise en oeuvre d'une électronique d’acquisition et de traitement continu programmable à des températures cryogéniques // Design and implementation of cryogenic electronics for signal acquisition at cryogenic temperatures
ABG-127489 | Thesis topic | |
2024-12-10 | Public/private mixed funding |
CEA Paris-Saclay Plateforme de Support à la Recherche
Saclay
Mise en oeuvre d'une électronique d’acquisition et de traitement continu programmable à des températures cryogéniques // Design and implementation of cryogenic electronics for signal acquisition at cryogenic temperatures
- Engineering sciences
Instrumentation / Sciences pour l’ingénieur / Physique mésoscopique / Physique de l’état condensé, chimie et nanosciences
Topic description
Le sujet de thèse que nous proposons a pour objet de démontrer qu’il est possible d’intégrer à des températures
cryogéniques l’intégralité de la chaîne d’instrumentation permettant de lire et de piloter les composants quantiques, comme
des qubits. En d’autres termes, nous cherchons à placer in-situ, dans le cryostat et au plus près des composants quantiques
(qubits) l’intégralité des systèmes, qui sont aujourd’hui placés à l’extérieur. De plus, afin de réaliser une avancée majeure,
nous visons une chaîne hyperfréquence (> 2 GHz) entièrement programmable. Ce dernier faut l’objet d’une thèse en cours
financée par l’Agence Innovation Défense (AID) et le Commissariat à l’Énergie Atomique (CEA) et d’un dépôt de projet de
type RAPID.
Dans le cadre de ce sujet de thèse, nous commencerons à quelques centaines de MHz. Plusieurs problèmes
principaux sont identifiés et sont à résoudre, parmi lesquels nous citerons :
— conception et intégration de chiplets en System-in-Packages (SiPs) compatibles avec les températures cryogéniques ;
— interfaçage et intégration dans le cryostat des composants Analog to Digital Converter (ADC), Digital to Analog
Converter (DAC) et processeurs de traitement ;
— gérer le débit de données élevés (plusieurs dizaines de Gbit/s par qubit) ;
— latence roundtrip maximum de 200 ns ;
— gestion de l’énergie (quelques dizaines de mW de budget par qubit) ;
— choix des étages cryogéniques adaptés au différents étages de traitements ;
— choix de technologies indépendantes de la nature des objets quantiques manipulés.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
The aim of our proposed thesis is to demonstrate that it is possible to integrate at cryogenic temperatures the entire instrumentation chain for reading and controlling quantum components at cryogenic temperatures
qubits. In other words, we are seeking to place in-situ, in the cryostat and as close as possible to the quantum components
(qubits), all the systems that are currently located outside. In addition, to achieve a major breakthrough
we are aiming for a fully programmable microwave chain (> 2 GHz). This is the subject of an ongoing thesis
financed by the Agence Innovation Défense (AID) and the Commissariat à l'Énergie Atomique (CEA) and a RAPID-type project application.
RAPID type project.
As part of this thesis, we will start at a few hundred MHz. Several main problems
are identified and need to be solved, including
- design and integration of chiplets in System-in-Packages (SiPs) compatible with cryogenic temperatures ;
- interfacing and integrating the Analog to Digital Converter (ADC), Digital to Analog
Converter (DAC) and processing components;
- manage high data rates (several tens of Gbit/s per qubit);
- maximum roundtrip latency of 200 ns;
- energy management (a few tens of mW budget per qubit);
- choice of cryogenic stages adapted to the different processing stages;
- choice of independent technologies
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Pôle fr : Direction de la Recherche Fondamentale
Département : Institut rayonnement et matière de Saclay
Service : Service de Physique de l’Etat Condensé
Laboratoire : Plateforme de Support à la Recherche
Date de début souhaitée : 01-01-2025
Ecole doctorale : Physique et Ingénierie: électrons, photons et sciences du vivant (EOBE)
Directeur de thèse : THEVENIN Mathieu
Organisme : CEA
Laboratoire : DRF/IRAMIS/SPEC/PSR
URL : https://iramis.cea.fr/spec/annuaire/?uidc=s0gzNzMwNzEAAA
URL : https://iramis.cea.fr/spec/lets/lets/
cryogéniques l’intégralité de la chaîne d’instrumentation permettant de lire et de piloter les composants quantiques, comme
des qubits. En d’autres termes, nous cherchons à placer in-situ, dans le cryostat et au plus près des composants quantiques
(qubits) l’intégralité des systèmes, qui sont aujourd’hui placés à l’extérieur. De plus, afin de réaliser une avancée majeure,
nous visons une chaîne hyperfréquence (> 2 GHz) entièrement programmable. Ce dernier faut l’objet d’une thèse en cours
financée par l’Agence Innovation Défense (AID) et le Commissariat à l’Énergie Atomique (CEA) et d’un dépôt de projet de
type RAPID.
Dans le cadre de ce sujet de thèse, nous commencerons à quelques centaines de MHz. Plusieurs problèmes
principaux sont identifiés et sont à résoudre, parmi lesquels nous citerons :
— conception et intégration de chiplets en System-in-Packages (SiPs) compatibles avec les températures cryogéniques ;
— interfaçage et intégration dans le cryostat des composants Analog to Digital Converter (ADC), Digital to Analog
Converter (DAC) et processeurs de traitement ;
— gérer le débit de données élevés (plusieurs dizaines de Gbit/s par qubit) ;
— latence roundtrip maximum de 200 ns ;
— gestion de l’énergie (quelques dizaines de mW de budget par qubit) ;
— choix des étages cryogéniques adaptés au différents étages de traitements ;
— choix de technologies indépendantes de la nature des objets quantiques manipulés.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
The aim of our proposed thesis is to demonstrate that it is possible to integrate at cryogenic temperatures the entire instrumentation chain for reading and controlling quantum components at cryogenic temperatures
qubits. In other words, we are seeking to place in-situ, in the cryostat and as close as possible to the quantum components
(qubits), all the systems that are currently located outside. In addition, to achieve a major breakthrough
we are aiming for a fully programmable microwave chain (> 2 GHz). This is the subject of an ongoing thesis
financed by the Agence Innovation Défense (AID) and the Commissariat à l'Énergie Atomique (CEA) and a RAPID-type project application.
RAPID type project.
As part of this thesis, we will start at a few hundred MHz. Several main problems
are identified and need to be solved, including
- design and integration of chiplets in System-in-Packages (SiPs) compatible with cryogenic temperatures ;
- interfacing and integrating the Analog to Digital Converter (ADC), Digital to Analog
Converter (DAC) and processing components;
- manage high data rates (several tens of Gbit/s per qubit);
- maximum roundtrip latency of 200 ns;
- energy management (a few tens of mW budget per qubit);
- choice of cryogenic stages adapted to the different processing stages;
- choice of independent technologies
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Pôle fr : Direction de la Recherche Fondamentale
Département : Institut rayonnement et matière de Saclay
Service : Service de Physique de l’Etat Condensé
Laboratoire : Plateforme de Support à la Recherche
Date de début souhaitée : 01-01-2025
Ecole doctorale : Physique et Ingénierie: électrons, photons et sciences du vivant (EOBE)
Directeur de thèse : THEVENIN Mathieu
Organisme : CEA
Laboratoire : DRF/IRAMIS/SPEC/PSR
URL : https://iramis.cea.fr/spec/annuaire/?uidc=s0gzNzMwNzEAAA
URL : https://iramis.cea.fr/spec/lets/lets/
Funding category
Public/private mixed funding
Funding further details
Presentation of host institution and host laboratory
CEA Paris-Saclay Plateforme de Support à la Recherche
Pôle fr : Direction de la Recherche Fondamentale
Département : Institut rayonnement et matière de Saclay
Service : Service de Physique de l’Etat Condensé
Candidate's profile
M2
Apply
Close
Vous avez déjà un compte ?
Nouvel utilisateur ?
More information about ABG?
Get ABG’s monthly newsletters including news, job offers, grants & fellowships and a selection of relevant events…
Discover our members
- PhDOOC
- Institut de Radioprotection et de Sureté Nucléaire - IRSN - Siège
- CESI
- ANRT
- Laboratoire National de Métrologie et d'Essais - LNE
- ONERA - The French Aerospace Lab
- Nokia Bell Labs France
- CASDEN
- Aérocentre, Pôle d'excellence régional
- Groupe AFNOR - Association française de normalisation
- Tecknowmetrix
- SUEZ
- Institut Sup'biotech de Paris
- MabDesign
- Généthon
- MabDesign
- TotalEnergies
- Ifremer
- ADEME