Électrobiologie de la membrane nucléaire : son rôle dans l'organisation du chromatin et du métabolisme // Electrobiology of the Nuclear Membrane and Chromatin in Relation to Metabolism
ABG-129353
ADUM-62307 |
Thesis topic | |
2025-03-11 | Public funding alone (i.e. government, region, European, international organization research grant) |
Sorbonne Université SIM (Sciences, Ingénierie, Médecine)
Paris - France
Électrobiologie de la membrane nucléaire : son rôle dans l'organisation du chromatin et du métabolisme // Electrobiology of the Nuclear Membrane and Chromatin in Relation to Metabolism
- Biology
Organisation nucleaire, Electrobiologie, Crowding, Biophysique
Nuclear organisation, Electrobiology, Cellular crowding, Biophysics
Nuclear organisation, Electrobiology, Cellular crowding, Biophysics
Topic description
La chromatine se divise en euchromatine, active transcriptionnellement, et hétérochromatine, silencieuse. Chez les mammifères, ces deux types forment des domaines de l'ordre du mégabase, ségrégués par séparation de phase (1). L'identité de ces domaines est spécifique au type cellulaire et souvent altérée dans le cancer (2). L'hétérochromatine, plus compacte et associée à la membrane nucléaire, est enrichie en méthylations, tandis que l'euchromatine est marquée par des acétylations. Des études montrent que les charges électriques influencent la compaction de la chromatine en mitose (3), mais leur rôle dans son organisation globale reste méconnu.
Chez la levure, l'hétérochromatine est confinée aux télomères et à quelques régions chromosomiques. Les télomères sont liés aux protéines Sir3, formant des agrégats (4–6), dont la localisation 3D varie selon la croissance cellulaire (7). En phase exponentielle, ils s'ancrent à la membrane nucléaire en micro-agrégats, tandis qu'en phase de quiescence ou sous surexpression de Sir3, ils forment un macro-agrégat nucléaire central (5,7). Cet ancrage, dépendant des protéines Esc1 et Ku (8), semble lié à l'activité métabolique et à la conformation de la chromatine.
Nous postulons que cet ancrage est influencé par le potentiel électrostatique de Donnan généré près de la membrane nucléaire et ses fluctuations. L'ADN, ainsi que les échanges ioniques entre noyau et cytoplasme (protéines, ARN, ATP), dépendent du métabolisme et pourraient modifier les potentiels électrostatiques affectant la chromatine. En effet, les concentrations ioniques contrôlent la taille du noyau (9–12).
Pour tester cette hypothèse, nous développerons des outils pour mesurer le potentiel électrique de la membrane nucléaire interne. Il a été détecté par patch-clamp dans des cellules glandulaires de Drosophila (13) et indirectement par des capteurs moléculaires chez Arabidopsis (14,15), mais aucune mesure systématique n'existe encore. Grâce au clonage modulaire (MoClo), nous concevrons des indicateurs génétiquement encodés de voltage (GEVIs) ciblant la membrane nucléaire en levure (nGEVIs). Ces protéines fluorescentes réagissent aux variations du potentiel membranaire (ΔVm). Nos résultats préliminaires montrent qu'un nGEVI basé sur l'architecture ASAP (16) se localise correctement et détecte des variations de potentiel induites par des changements nutritifs.
L'étudiant développera un pipeline MoClo pour générer des nGEVIs personnalisés et étudier les interactions entre potentiel électrique, croissance cellulaire et organisation de la chromatine. Ce modèle levurien, génétiquement accessible, fournira des informations clés sur les mécanismes électrobiologiques des eucaryotes.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Chromatin can be distinguished between transcriptionally active euchromatin and silenced heterochromatin. In mammalian cells, these two types of chromatin define megabase-sized domains spatially segregated by phase separation (1). Because the identity of such domains can be biochemically determined, it has become clear that it is cell-type specific and that it is often altered in cancer (2). Crucially, heterochromatin and euchromatin have different charge densities: the former principally characterized by additional histone and DNA methylation, and the latter by histone acetylation. Also, heterochromatin is more compact than euchromatin and is often physically associated with the nuclear membrane. Electric charges have been shown to have an effect on such compaction during mitosis (3). Despite these crucial electric properties, the role of electric potentials on chromatin organization and physiology remains essentially unknown.
In budding yeast, heterochromatin is confined to the subtelomeres and to a few kilobase-sized regions within chromosomes. Telomeric heterochromatin is bound to Sir3 proteins, acting as a “glue” and forming aggregates (4–6). The structure and location of these heterochromatic loci in 3D varies across growth phases (7). Indeed, telomere clusters localize either at the nuclear membrane forming micro-aggregates, or to the center of the nucleus forming one macro-aggregate; with the former happening during exponential phase, and the latter during the quiescent phase (7) or in cells overexpressing Sir3 (5). Moreover, it is well known that telomeres are tethered to the nuclear membrane through the Esc1 and Ku proteins (8), while they are dispensable for tethering in exponential phase. This suggests an unexplored link between metabolic activity, nuclear localization and shape of aggregates.
Taking these advances together, our hypothesis is that tethering is caused by the Donnan' electrostatic potential difference generated close to the nuclear membrane or its fluctuations. We consider that the quantity of DNA as well as the rate and quality of ion exchanges between the nucleus and the cytoplasm, including proteins, RNA and ATP, are dependent on metabolic activities, as such, their effects on the electrostatic potentials at the inner nuclear membrane can play a role in chromatin conformation. Indeed, recent results have shown that ion concentrations control the size of the nucleus (9–12).
To test our hypothesis, we will build tools to quantify the electrical properties of the inner nuclear membrane. The electrostatic potential at the nuclear envelope has so far been measured with whole-cell patch clamp in Drosophila gland cells (perforating the cell-membrane to access the nucleus), and has been shown to be of the same order of magnitude as the potential difference at the plasma membrane (13). It has also been indirectly estimated through various molecular sensors in Arabidopsis thaliana (14,15). However, systematic measurements under various conditions is still missing, mainly due to lack of widely-applicable tools. Using modular cloning (MoClo), we will develop a genetically-encoded voltage indicators (GEVIs) targeted at the inner nuclear membrane in yeast (nGEVIs). GEVIs are membrane proteins that emit fluorescence in proportion to the membrane electric potential difference (ΔVm). Our preliminary results demonstrate that an nGEVI based on the accelerated sensor of action potential (ASAP) architecture (16), localizes correctly and reports changes in membrane potential induced by changes in nutrient availability. The student will set up a MoClo pipeline for the generation of customized nGEVIs to study electrobiological phenomena in the regulation of cell growth, physiology and chromatin organization. Understanding the complex interplay between these elements in the genetic-tool rich yeast model, will provide key insights into the molecular mechanisms and biological function of electrobiology in eukaryotes.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Début de la thèse : 01/10/2025
Chez la levure, l'hétérochromatine est confinée aux télomères et à quelques régions chromosomiques. Les télomères sont liés aux protéines Sir3, formant des agrégats (4–6), dont la localisation 3D varie selon la croissance cellulaire (7). En phase exponentielle, ils s'ancrent à la membrane nucléaire en micro-agrégats, tandis qu'en phase de quiescence ou sous surexpression de Sir3, ils forment un macro-agrégat nucléaire central (5,7). Cet ancrage, dépendant des protéines Esc1 et Ku (8), semble lié à l'activité métabolique et à la conformation de la chromatine.
Nous postulons que cet ancrage est influencé par le potentiel électrostatique de Donnan généré près de la membrane nucléaire et ses fluctuations. L'ADN, ainsi que les échanges ioniques entre noyau et cytoplasme (protéines, ARN, ATP), dépendent du métabolisme et pourraient modifier les potentiels électrostatiques affectant la chromatine. En effet, les concentrations ioniques contrôlent la taille du noyau (9–12).
Pour tester cette hypothèse, nous développerons des outils pour mesurer le potentiel électrique de la membrane nucléaire interne. Il a été détecté par patch-clamp dans des cellules glandulaires de Drosophila (13) et indirectement par des capteurs moléculaires chez Arabidopsis (14,15), mais aucune mesure systématique n'existe encore. Grâce au clonage modulaire (MoClo), nous concevrons des indicateurs génétiquement encodés de voltage (GEVIs) ciblant la membrane nucléaire en levure (nGEVIs). Ces protéines fluorescentes réagissent aux variations du potentiel membranaire (ΔVm). Nos résultats préliminaires montrent qu'un nGEVI basé sur l'architecture ASAP (16) se localise correctement et détecte des variations de potentiel induites par des changements nutritifs.
L'étudiant développera un pipeline MoClo pour générer des nGEVIs personnalisés et étudier les interactions entre potentiel électrique, croissance cellulaire et organisation de la chromatine. Ce modèle levurien, génétiquement accessible, fournira des informations clés sur les mécanismes électrobiologiques des eucaryotes.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Chromatin can be distinguished between transcriptionally active euchromatin and silenced heterochromatin. In mammalian cells, these two types of chromatin define megabase-sized domains spatially segregated by phase separation (1). Because the identity of such domains can be biochemically determined, it has become clear that it is cell-type specific and that it is often altered in cancer (2). Crucially, heterochromatin and euchromatin have different charge densities: the former principally characterized by additional histone and DNA methylation, and the latter by histone acetylation. Also, heterochromatin is more compact than euchromatin and is often physically associated with the nuclear membrane. Electric charges have been shown to have an effect on such compaction during mitosis (3). Despite these crucial electric properties, the role of electric potentials on chromatin organization and physiology remains essentially unknown.
In budding yeast, heterochromatin is confined to the subtelomeres and to a few kilobase-sized regions within chromosomes. Telomeric heterochromatin is bound to Sir3 proteins, acting as a “glue” and forming aggregates (4–6). The structure and location of these heterochromatic loci in 3D varies across growth phases (7). Indeed, telomere clusters localize either at the nuclear membrane forming micro-aggregates, or to the center of the nucleus forming one macro-aggregate; with the former happening during exponential phase, and the latter during the quiescent phase (7) or in cells overexpressing Sir3 (5). Moreover, it is well known that telomeres are tethered to the nuclear membrane through the Esc1 and Ku proteins (8), while they are dispensable for tethering in exponential phase. This suggests an unexplored link between metabolic activity, nuclear localization and shape of aggregates.
Taking these advances together, our hypothesis is that tethering is caused by the Donnan' electrostatic potential difference generated close to the nuclear membrane or its fluctuations. We consider that the quantity of DNA as well as the rate and quality of ion exchanges between the nucleus and the cytoplasm, including proteins, RNA and ATP, are dependent on metabolic activities, as such, their effects on the electrostatic potentials at the inner nuclear membrane can play a role in chromatin conformation. Indeed, recent results have shown that ion concentrations control the size of the nucleus (9–12).
To test our hypothesis, we will build tools to quantify the electrical properties of the inner nuclear membrane. The electrostatic potential at the nuclear envelope has so far been measured with whole-cell patch clamp in Drosophila gland cells (perforating the cell-membrane to access the nucleus), and has been shown to be of the same order of magnitude as the potential difference at the plasma membrane (13). It has also been indirectly estimated through various molecular sensors in Arabidopsis thaliana (14,15). However, systematic measurements under various conditions is still missing, mainly due to lack of widely-applicable tools. Using modular cloning (MoClo), we will develop a genetically-encoded voltage indicators (GEVIs) targeted at the inner nuclear membrane in yeast (nGEVIs). GEVIs are membrane proteins that emit fluorescence in proportion to the membrane electric potential difference (ΔVm). Our preliminary results demonstrate that an nGEVI based on the accelerated sensor of action potential (ASAP) architecture (16), localizes correctly and reports changes in membrane potential induced by changes in nutrient availability. The student will set up a MoClo pipeline for the generation of customized nGEVIs to study electrobiological phenomena in the regulation of cell growth, physiology and chromatin organization. Understanding the complex interplay between these elements in the genetic-tool rich yeast model, will provide key insights into the molecular mechanisms and biological function of electrobiology in eukaryotes.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Début de la thèse : 01/10/2025
Funding category
Public funding alone (i.e. government, region, European, international organization research grant)
Funding further details
Concours pour un contrat doctoral
Presentation of host institution and host laboratory
Sorbonne Université SIM (Sciences, Ingénierie, Médecine)
Institution awarding doctoral degree
Sorbonne Université SIM (Sciences, Ingénierie, Médecine)
Graduate school
515 Complexité du vivant
Candidate's profile
Biologie Moléculaire
Bioinformatique
Biophysique
Molecular biology Bioinformatics Biophysics
Molecular biology Bioinformatics Biophysics
2025-06-06
Apply
Close
Vous avez déjà un compte ?
Nouvel utilisateur ?
More information about ABG?
Get ABG’s monthly newsletters including news, job offers, grants & fellowships and a selection of relevant events…
Discover our members
MabDesign
Généthon
Laboratoire National de Métrologie et d'Essais - LNE
CASDEN
Aérocentre, Pôle d'excellence régional
Ifremer
Groupe AFNOR - Association française de normalisation
Nokia Bell Labs France
Tecknowmetrix
SUEZ
ONERA - The French Aerospace Lab
MabDesign
ADEME
ANRT
PhDOOC
CESI
TotalEnergies
ASNR - Autorité de sûreté nucléaire et de radioprotection - Siège
Institut Sup'biotech de Paris
-
JobPermanentRef. ABG128969Institut Polytechnique des Sciences Avancées - IPSAToulouse - Occitanie - France
Enseignant-chercheur en Mécanique des fluides numérique
Open to all scientific expertisesAny -
JobPermanentRef. ABG129192Association Bernard Gregory (ABG)Paris (3ème) - Ile-de-France - France
Business Developer (F/H)
Open to all scientific expertisesAny