Recyclage des aciers par traitement de précipitation // Recycling Steels by Selective Precipitation Treatment Modelling
ABG-129414
ADUM-63214 |
Thesis topic | |
2025-03-12 | Other public funding |
Université de Lille
VILLENEUVE D'ASCQ CEDEX - France
Recyclage des aciers par traitement de précipitation // Recycling Steels by Selective Precipitation Treatment Modelling
- Chemistry
recyclage, métallurgie, modélisation, thermodynamique, cinétique, transformations de phases
recycling, metallurgy, modelling, thermodynamics, kinetics, phase transformations
recycling, metallurgy, modelling, thermodynamics, kinetics, phase transformations
Topic description
Le projet RESSET, dans lequel s'inscrit cette thèse, entend éviter le décyclage des ferrailles en explorant de nouvelles routes métallurgiques engendrant des propriétés mécaniques améliorées, en présence d'éléments chimiques a priori contaminants et néfastes, comme le Cu, et en utilisant des concepts de design des matériaux. On visera en priorité des séquences de précipitation pouvant renforcer le matériau, à composition contrainte, et leur couplage avec d'autres transformations de phases d'intérêt dans les aciers, à savoir la transformation martensitique ou la réversion de l'austénite. A cet effet, des outils de modélisation des cinétiques des transformations de phases seront implémentés. Des microstructures obtenues expérimentalement par des traitements thermomécaniques sur un alliage modèle avec une composition typique de ferrailles automobiles serviront d'une part à obtenir des informations sur les évolutions microstructurales aidant au développement des modèles théoriques. D'autre part, elles seront confrontées aux prédictions des simulations pour valider leur robustesse et pour pouvoir l'utiliser pour améliorer le recyclage des aciers.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
At first sight there is limited room for steel recycling improvement as the recycling rate is already quite high (90%). However, this rate does not account for downcycling aspects. Indeed, recycling a material does not mean that its application is as prestigious as originally. New alloys are thus processed to fulfill the need for structural and functional materials, generating a large part of the CO2 emission over the world. The fact that materials are not simply reused is partly related to sorting issues. The industrial technology lacks maturity to completely differentiate the huge diversity of grades ending up to scrap dealers. Consequently, steel scrap becomes a mix of grades that does not have the composition the research and material development have focused on so far. In turn, the scrap is either mixed with primary chemical elements from ores to return to a well-known composition, or transformed into material parts for which the specifications are less strict. From a sustainability perspective, it is needed to take care of this scrap.
The RESSET project, framework for this thesis, aims at avoiding steel scrap downcycling by exploring new thermomechanical routes leading to improved mechanical properties in presence of contaminants, like Cu, and using materials design concepts. The work specifically intends for precipitation sequences able to strengthen the material. To fulfill this objective, modelling tools describing phase transformation kinetics depending on processing conditions and for the constrained scrap composition will be developed. Experimentally obtained microstructure of a model alloy subjected to a thermomechanical treatment and which composition will be fixed by a typical scrap composition will be investigated to get insights into the microstructure evolution during the processing to help the fundamental model development. These microstructures will finally be compared to the modelling tool predictions in order to validate it and to use it to help steel recycling by providing new solutions.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Début de la thèse : 01/10/2025
WEB : https://umet.univ-lille.fr/Uploads/get.php?id=242
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
At first sight there is limited room for steel recycling improvement as the recycling rate is already quite high (90%). However, this rate does not account for downcycling aspects. Indeed, recycling a material does not mean that its application is as prestigious as originally. New alloys are thus processed to fulfill the need for structural and functional materials, generating a large part of the CO2 emission over the world. The fact that materials are not simply reused is partly related to sorting issues. The industrial technology lacks maturity to completely differentiate the huge diversity of grades ending up to scrap dealers. Consequently, steel scrap becomes a mix of grades that does not have the composition the research and material development have focused on so far. In turn, the scrap is either mixed with primary chemical elements from ores to return to a well-known composition, or transformed into material parts for which the specifications are less strict. From a sustainability perspective, it is needed to take care of this scrap.
The RESSET project, framework for this thesis, aims at avoiding steel scrap downcycling by exploring new thermomechanical routes leading to improved mechanical properties in presence of contaminants, like Cu, and using materials design concepts. The work specifically intends for precipitation sequences able to strengthen the material. To fulfill this objective, modelling tools describing phase transformation kinetics depending on processing conditions and for the constrained scrap composition will be developed. Experimentally obtained microstructure of a model alloy subjected to a thermomechanical treatment and which composition will be fixed by a typical scrap composition will be investigated to get insights into the microstructure evolution during the processing to help the fundamental model development. These microstructures will finally be compared to the modelling tool predictions in order to validate it and to use it to help steel recycling by providing new solutions.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Début de la thèse : 01/10/2025
WEB : https://umet.univ-lille.fr/Uploads/get.php?id=242
Funding category
Other public funding
Funding further details
ANR Financement d'Agences de financement de la recherche
Presentation of host institution and host laboratory
Université de Lille
Institution awarding doctoral degree
Université de Lille
Graduate school
104 Sciences de la Matière du Rayonnement et de l'Environnement
Candidate's profile
Le·la candidat·e devra avoir un Master 2, diplôme d'ingénieur ou équivalent dans le domaine des matériaux avec des connaissances sérieuses en métallurgie (thermodynamique, microstructures, techniques de caractérisations…). Des connaissances de bases ou une expérience en calculs thermodynamiques seraient appréciées.
Le·la candidat·e devra présenter de bonnes dispositions à la programmation et à la simulation numérique.
The candidate must have a Master 2, engineering degree or equivalent in the field of materials science with serious knowledge in metallurgy (thermodynamics, microstructures, characterization techniques, etc.). Basic knowledge or experience in thermodynamic calculations would be appreciated. The candidate will be expected to demonstrate good abilities for experimentation and numerical simulation.
The candidate must have a Master 2, engineering degree or equivalent in the field of materials science with serious knowledge in metallurgy (thermodynamics, microstructures, characterization techniques, etc.). Basic knowledge or experience in thermodynamic calculations would be appreciated. The candidate will be expected to demonstrate good abilities for experimentation and numerical simulation.
2025-04-30
Apply
Close
Vous avez déjà un compte ?
Nouvel utilisateur ?
More information about ABG?
Get ABG’s monthly newsletters including news, job offers, grants & fellowships and a selection of relevant events…
Discover our members
CESI
MabDesign
SUEZ
Groupe AFNOR - Association française de normalisation
Laboratoire National de Métrologie et d'Essais - LNE
MabDesign
ANRT
ONERA - The French Aerospace Lab
PhDOOC
CASDEN
ADEME
Aérocentre, Pôle d'excellence régional
Tecknowmetrix
ASNR - Autorité de sûreté nucléaire et de radioprotection - Siège
Ifremer
TotalEnergies
Nokia Bell Labs France
Généthon
Institut Sup'biotech de Paris
-
JobPermanentRef. ABG128969Institut Polytechnique des Sciences Avancées - IPSAToulouse - Occitanie - France
Enseignant-chercheur en Mécanique des fluides numérique
Open to all scientific expertisesAny -
JobPermanentRef. ABG129192Association Bernard Gregory (ABG)Paris (3ème) - Ile-de-France - France
Business Developer (F/H)
Open to all scientific expertisesAny