Où docteurs et entreprises se rencontrent
Menu
Connexion

Vous avez déjà un compte ?

Nouvel utilisateur ?

Diffusion des rayons X assistée par Intelligence Artificielle : le problème de la représentativité des bases de données synthétiques et de l’indiscernabilité des prédictions. // X-ray diffusion assisted by Artificial Intelligence: the problem of the repre

ABG-126566 Sujet de Thèse
30/10/2024 Financement public/privé
CEA Paris-Saclay Laboratoire Interdisciplinaire sur l’Organisation Nanométrique et Supramoléculaire
Saclay
Diffusion des rayons X assistée par Intelligence Artificielle : le problème de la représentativité des bases de données synthétiques et de l’indiscernabilité des prédictions. // X-ray diffusion assisted by Artificial Intelligence: the problem of the repre
  • Science de la donnée (stockage, sécurité, mesure, analyse)
Data intelligence dont Intelligence Artificielle / Défis technologiques / Nano-caractérisation avancée / Défis technologiques

Description du sujet

L’avènement de l’intelligence artificielle rend envisageable l’accélération et la démocratisation du traitement de données de diffusion des rayons X aux petits angles (SAXS), une technique experte de caractérisation de nanomatériaux qui permet de déterminer la surface spécifique, la fraction volumique et les tailles caractéristiques de structures entre 0.5 à 200 nm.

Or, il y a une double problématique autour du SAXS assisté par Intelligence artificielle : 1) la rareté des données impose d’entraîner les modèles sur des données synthétiques, ce qui pose le problème de leur représentativité des données réelles, et 2) les lois de la physique stipulent qu’à une mesure de SAXS peuvent correspondre plusieurs nanostructures candidates, ce qui pose le problème de l’indiscernabilité des prédictions. Cette thèse vise donc à bâtir un modèle d’intelligence artificielle adapté au SAXS entraîné sur des données synthétiques validées expérimentalement, et sur la réponse experte qui pondère la catégorisation des prédictions par leur indiscernabilité.

------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------

The advent of artificial intelligence makes it possible to accelerate and democratize the processing of small-angle X-ray scattering (SAXS) data, an expert technique for characterizing nanomaterials that allows to determine the specific surface area, volume fraction and characteristic sizes of structures between 0.5 to 200 nm.

However, there is a double problem around SAXS assisted by Artificial Intelligence: 1) the scarcity of data requires training the models on synthetic data, which poses the problem of their representativeness of real data, and 2) the laws of physics stipulate that several candidate nanostructures can correspond to a SAXS measurement, which poses the problem of the indistinguishability of predictions. This thesis therefore aims to build an artificial intelligence model adapted to SAXS trained on experimentally validated synthetic data, and on the expert response which weights the categorization of predictions by their indistinguishability.

------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Pôle fr : Direction de la Recherche Fondamentale
Département : Institut rayonnement et matière de Saclay
Service : Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie
Laboratoire : Laboratoire Interdisciplinaire sur l’Organisation Nanométrique et Supramoléculaire
Date de début souhaitée : 01-10-2025
Ecole doctorale : Sciences Chimiques: Molécules, Matériaux, Instrumentation et Biosystèmes (2MIB)
Directeur de thèse : CARRIÈRE David
Organisme : CEA
Laboratoire : DRF/IRAMIS/NIMBE/LIONS
URL : https://iramis.cea.fr/nimbe/lions/pisp/david-carriere/
URL : https://iramis.cea.fr/nimbe/lions/

Nature du financement

Financement public/privé

Précisions sur le financement

Présentation établissement et labo d'accueil

CEA Paris-Saclay Laboratoire Interdisciplinaire sur l’Organisation Nanométrique et Supramoléculaire

Pôle fr : Direction de la Recherche Fondamentale
Département : Institut rayonnement et matière de Saclay
Service : Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie

Profil du candidat

Formation de base en intelligence artificielle, Python
Partager via
Postuler
Fermer

Vous avez déjà un compte ?

Nouvel utilisateur ?