Où docteurs et entreprises se rencontrent
Menu
Connexion

Vous avez déjà un compte ?

Nouvel utilisateur ?

MÉTHYLATION DE L'ADN ET ORGANISATION 3D DU GÉNOME BACTÉRIEN // DNA METHYLATION AND THE 3D GENOME ORGANIZATION OF BACTERIA

ABG-127492
ADUM-59767
Sujet de Thèse
10/12/2024 Financement public/privé
Université Paris-Saclay GS Life Sciences and Health
Evry cedex - France
MÉTHYLATION DE L'ADN ET ORGANISATION 3D DU GÉNOME BACTÉRIEN // DNA METHYLATION AND THE 3D GENOME ORGANIZATION OF BACTERIA
  • Biologie
Épigénomique bactérienne, Édition de l'épigénome
bacterial epigenomics, epigenome editing

Description du sujet

La méthylation de l'ADN chez les bactéries a été traditionnellement étudiée dans le contexte de la défense antiparasitaire. Cependant, les progrès du séquençage qui permettent l'analyse de la méthylation de l'ADN à l'échelle génomique se développent actuellement et ont propulsé une révolution épigénomique dans notre compréhension de l'étendue et de la pertinence physiologique de la méthylation. Généralement, la première étape de l'étude des impacts fonctionnels de la méthylation de l'ADN bactérien consiste à comparer l'expression globale des gènes entre des souches de type sauvage (WT) et des souches mutantes de méthyltransférase (MTase). Plusieurs études utilisant l'ARN-seq pour de telles comparaisons ont montré que la perturbation d'une seule MTase d'ADN entraîne souvent des dizaines, des centaines et parfois des milliers de gènes différentiellement exprimés (DE). Selon le modèle de compétition locale, la liaison compétitive entre une MTase et d'autres protéines liant l'ADN (par exemple, des facteurs de transcription) sur des sites de motifs spécifiques, affecte la transcription d'un gène voisin, entraînant une variation phénotypique au sein de la population bactérienne. Toutefois, si dans certains cas les effets régulateurs des MTases peuvent être attribués de manière concluante à la méthylation au niveau des promoteurs des gènes cibles, la grande majorité (>90%) des gènes DE n'ont pas de sites méthylés dans leurs régions promotrices, ce qui implique que les MTases ne sont pas des agents de régulation de la transcription, et que le modèle de compétition locale ne s'applique pas à la plupart des gènes DE. Une autre possibilité est que l'état de méthylation des motifs individuels régule l'expression d'un facteur de transcription, provoquant un large changement en aval dans l'expression de ses gènes cibles. Cependant, cette dernière hypothèse n'est pas suffisamment explicative pour un si grand nombre de gènes DE. Une hypothèse alternative concerne l'effet de la méthylation de l'ADN sur la topologie des chromosomes, en induisant des changements structurels qui modifient le répertoire des gènes exposés à la machinerie transcriptionnelle cellulaire. Nous avons récemment identifié CamA, une MTase core de Clostridioides difficile méthylant CAAAAA, qui joue un rôle dans la formation du biofilm, la sporulation et la transmission in vivo. De plus, dans une analyse ultérieure à grande échelle, nous avons découvert que CamA n'était que la partie émergée de l'iceberg, avec 45 % des espèces bactériennes de Genbank contenant au moins une MTase core ou quasi core, ce qui montre que ces dernières sont abondantes et suggère que leurs modifications épigénétiques sont également importantes pour les bactéries. En outre, des analogues de la S-adénosyl-l-méthionine (SAM) ont réussi à inhiber CamA, ce qui représente une première étape importante dans la création de thérapeutiques puissantes et sélectives ciblées sur l'épigénétique qui peuvent être exploitées comme nouveaux antimicrobiens.
Dans cette proposition de projet de doctorat, le candidat retenu est invité à déchiffrer l'interaction entre la méthylation bactérienne, l'organisation spatiale du génome et l'expression des gènes en répondant aux questions suivantes : i) la méthylation modifie-t-elle les domaines d'interaction chromosomique ? ii) les gènes DE et/ou les motifs de méthylation cibles sont-ils enrichis dans les limites des domaines d'interaction chromosomique modifiables ? iii) pouvons-nous modifier le méthylome (globalement ou localement) pour réprimer certains agents pathogènes humains ? Il / elle utilisera les technologies de séquençage Hi-C et long-read combinées à la génétique microbienne et à la génomique comparative pour faire progresser notre compréhension dans le domaine de l'épigénomique microbienne.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------

DNA methylation in bacteria has been traditionally studied in the context of antiparasitic defense and as part of the innate immune discrimination between self and non-self DNA. However, sequencing advances that allow genome-wide analysis of DNA methylation at the single-base resolution are nowadays expanding and have propelled a modern epigenomic revolution in our understanding of the extent, evolution, and physiological relevance of methylation. Typically, the first step in studying the functional impacts of bacterial DNA methylation is to compare global gene expression between wild-type (WT) and methyltransferase (MTase) mutant strains. Several studies using RNA-seq for such comparisons have shown that perturbation of a single DNA MTase often results in tens, hundreds, and sometimes thousands of differentially expressed (DE) genes. According to the local competition model, competitive binding between an MTase and other DNA-binding proteins (e.g.: transcription factors) at specific motif sites affects transcription of a nearby gene, leading to phenotypic variation within the bacterial population. However, while in some cases the regulatory effects of MTases can be conclusively traced to methylation at the promoters of target genes, the large majority (>90%) of DE genes do not have methylated sites in their promoter regions, which implies that the local competition model does not apply to most DE genes. Another possibility is that the methylation status at individual motif sites might regulate the expression of a transcription factor, causing a broad downstream shift in the expression of its target genes. Yet, the latter is also not sufficiently explanatory for such a large number of DE genes. One hypothesis relates to the effect of DNA methylation on the chromosome topology whereby methylation induces structural changes that alter the repertoire of genes exposed to the cellular transcriptional machinery. We have recently identified CamA, a core MTase of Clostridioides difficile methylating at CAAAAA, with a role in biofilm formation, sporulation, and in-vivo transmission. Moreover, in a subsequent large-scale analysis, we found that CamA was just the tip of the iceberg, with 45% of Genbank's bacterial species containing at least one core or quasi-core MTase, which shows that the latter are abundant and suggests that their epigenetic modifications are likely important and frequent. On top of this, S-adenosyl- l-methionine (SAM) analogues were found to successfully inhibit CamA, in what represents a substantial first step in generating potent and selective epigenetically targeted therapeutics that can be exploited as new antimicrobials. In this PhD project proposal, the successful candidate is asked to decipher the interplay between bacterial methylation, spatial genome organization and gene expression by answering the following questions: i) does methylation alter chromosomal interaction domains? ii) are DE genes and/or target methylation motifs enriched in changeable chromosomal interaction domain boundaries? iii) Can we tinker the methylome (globally or locally) to repress certain human pathogens? He / she will use Hi-C and long-read sequencing technologies combined with microbial genetics, and comparative genomics to broadly leverage the field of microbial epigenomics.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Début de la thèse : 01/10/2025
WEB : https://www.genoscope.cns.fr/MGE/

Nature du financement

Financement public/privé

Précisions sur le financement

Financement du CEA - CFR (Contrat formation par la recherche)

Présentation établissement et labo d'accueil

Université Paris-Saclay GS Life Sciences and Health

Etablissement délivrant le doctorat

Université Paris-Saclay GS Life Sciences and Health

Ecole doctorale

577 Structure et Dynamique des Systèmes Vivants

Profil du candidat

Nous recherchons un candidat hautement motivé, ayant une formation en bioinformatique, biologie moléculaire ou dans un domaine similaire, avec un fort désir de succès dans le domaine de l'épigénomique microbienne à l'échelle internationale et un intérêt pour une thèse de doctorat interdisciplinaire.
We are looking for a highly motivated candidate with a background in bioinformatics, molecular biology, or similar, with a keen desire to excel in the field of microbial epigenomics at the international scale, and interest in an interdisciplinary PhD thesis.
07/03/2025
Partager via
Postuler
Fermer

Vous avez déjà un compte ?

Nouvel utilisateur ?