Régulation de la dynamique et des transitions pathologiques des granules de stress par le réseau de chaperons // Regulation of the dynamics and pathological transitions of stress granules by the chaperone network
ABG-128280
ADUM-61088 |
Sujet de Thèse | |
01/02/2025 |
Université Paris-Saclay GS Life Sciences and Health
Gif-sur-Yvette - France
Régulation de la dynamique et des transitions pathologiques des granules de stress par le réseau de chaperons // Regulation of the dynamics and pathological transitions of stress granules by the chaperone network
- Biologie
Granules de stress, agrégation protéique, C. elegans, chaperons moléculaires
Stress granules, protein aggregation, C. elegans, molecular chaperones
Stress granules, protein aggregation, C. elegans, molecular chaperones
Description du sujet
La formation de granules de stress (GS) est un processus conservé par lequel les protéines et les ARNm s'assemblent de manière réversible en condensats moléculaires en réponse à l'arrêt de la traduction lors d'un stress cellulaire. L'altération des propriétés liquides des GS contribue à la formation d'agrégats pathologiques tels que ceux observés dans de nombreuses maladies liées à l'âge. Ces dernières années, les chaperons moléculaires de la famille Hsp70 sont apparus comme d'importants régulateurs de la dynamique des GS, modulant leurs propriétés matérielles et facilitant leur désassemblage lors de la récupération. Hsp70 collabore avec de nombreux partenaires, appelés co-chaperons, qui spécifient sa fonction et sa localisation. Comment cette complexité du réseau de chaperons Hsp70 contribue à la dynamique des GS et à leur transformation en agrégats pathologiques dans les maladies liées à l'âge reste une question ouverte. Ce projet vise à comprendre comment la diversité du réseau de chaperons Hsp70 est exploitée pour réguler la dynamique des GS dans différents tissus d'un animal, et à déterminer comment cela contribue aux transitions pathologiques des GS. Pour ce faire, nous combinerons des méthodes d'imagerie du vivant et de génétique chez le nématode Caenorhabditis elegans transparent et à courte durée de vie, avec des approches complémentaires en système reconstitué in vitro. Ces études permettront de mieux comprendre la régulation des transitions de phase de la condensation physiologique à l'agrégation pathologique, avec des implications pour les mécanismes de vieillissement et les troubles associés, dont plusieurs maladies neurodégénératives dévastatrices.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
The formation of stress granules (SGs) is a conserved process through which proteins and mRNAs reversibly assemble into biomolecular condensates in response to translational shutdown during cellular stress. Alteration of the liquid-like properties of SG is thought to contribute to the formation of pathological aggregates such as observed in many age-related diseases. In recent years, molecular chaperones of the Hsp70 family have emerged as important regulators of the dynamics of SG, modulating their material properties and facilitating their disassembly during recovery. Hsp70 collaborates with many partners, called co-chaperones, that specify the function and localization of the core chaperone. How such complexity of the Hsp70 chaperone network contributes to the dynamics of SGs and their transition to pathological aggregates in age-related diseases is not known. This project aims to unravel how the diversity of the Hsp70 chaperone network is harnessed to regulate the dynamics of SGs in different tissues of an animal, and determine how it contributes to pathological transitions. For this, we will combine live imaging and genetic approaches in the short-lived and transparent Caenorhabditis elegans model system, to complementary in vitro reconstituted systems. These studies will provide insights into the regulation of protein phase transitions from physiological condensation to pathological protein aggregation, with implications for aging mechanisms and related disorders including several devastating neurodegenerative diseases.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Début de la thèse : 01/10/2025
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
The formation of stress granules (SGs) is a conserved process through which proteins and mRNAs reversibly assemble into biomolecular condensates in response to translational shutdown during cellular stress. Alteration of the liquid-like properties of SG is thought to contribute to the formation of pathological aggregates such as observed in many age-related diseases. In recent years, molecular chaperones of the Hsp70 family have emerged as important regulators of the dynamics of SG, modulating their material properties and facilitating their disassembly during recovery. Hsp70 collaborates with many partners, called co-chaperones, that specify the function and localization of the core chaperone. How such complexity of the Hsp70 chaperone network contributes to the dynamics of SGs and their transition to pathological aggregates in age-related diseases is not known. This project aims to unravel how the diversity of the Hsp70 chaperone network is harnessed to regulate the dynamics of SGs in different tissues of an animal, and determine how it contributes to pathological transitions. For this, we will combine live imaging and genetic approaches in the short-lived and transparent Caenorhabditis elegans model system, to complementary in vitro reconstituted systems. These studies will provide insights into the regulation of protein phase transitions from physiological condensation to pathological protein aggregation, with implications for aging mechanisms and related disorders including several devastating neurodegenerative diseases.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Début de la thèse : 01/10/2025
Nature du financement
Précisions sur le financement
Contrats ED : Programme blanc GS-LSaH
Présentation établissement et labo d'accueil
Université Paris-Saclay GS Life Sciences and Health
Etablissement délivrant le doctorat
Université Paris-Saclay GS Life Sciences and Health
Ecole doctorale
577 Structure et Dynamique des Systèmes Vivants
Profil du candidat
Nous recherchons un(e) candidat(e) motivé(e) avec un intérêt marqué dans les domaines de la biologie cellulaire, de la génétique, et/ou de la biochimie cellulaire. La/le candidat(e) aura des connaissances théoriques et pratiques des techniques de biologie moléculaire à travers des expériences préalables de recherche en laboratoire. Une connaissance de l'organisme modèle C. elegans ou de l'expérience en imagerie ou purification de protéines seraient appréciées mais pas requises. La/le candidat(e) idéal(e) sera capable de travailler en autonomie comme en équipe, et possèdera des compétences avancées d'organisation, de communication, et d'analyse.
We are looking for a highly motivated candidate with a strong interest in the fields of cellular biology, genetics, and/or cellular biochemistry. The candidate should have theoretical and practical knowledge of basic molecular biology techniques through focused prior research lab work. Hands on experience with the C. elegans model, microscopy, or protein purification would be a plus but is not required. The ideal candidate will be able to work both independently and as a team, and will possess excellent organizational, communication, and analytical skills.
We are looking for a highly motivated candidate with a strong interest in the fields of cellular biology, genetics, and/or cellular biochemistry. The candidate should have theoretical and practical knowledge of basic molecular biology techniques through focused prior research lab work. Hands on experience with the C. elegans model, microscopy, or protein purification would be a plus but is not required. The ideal candidate will be able to work both independently and as a team, and will possess excellent organizational, communication, and analytical skills.
24/03/2025
Postuler
Fermer
Vous avez déjà un compte ?
Nouvel utilisateur ?
Besoin d'informations sur l'ABG ?
Vous souhaitez recevoir nos infolettres ?
Découvrez nos adhérents
Laboratoire National de Métrologie et d'Essais - LNE
MabDesign
Nokia Bell Labs France
Institut Sup'biotech de Paris
ANRT
Ifremer
CESI
CASDEN
Aérocentre, Pôle d'excellence régional
Institut de Radioprotection et de Sureté Nucléaire - IRSN - Siège
Tecknowmetrix
PhDOOC
SUEZ
ONERA - The French Aerospace Lab
Groupe AFNOR - Association française de normalisation
Généthon
ADEME
TotalEnergies
MabDesign