AI contribution for complex phenomena predictions in model porous media
ABG-131490 | Sujet de Thèse | |
28/04/2025 | Contrat doctoral |

- Physique
Description du sujet
In New Energy Technologies (NET) fields, answering numerous matters and managing applications like geothermal, carbon dioxide (CO2) or hydrogen (H2) storage, require a good comprehension of fluid flows in porous media.
This PhD subject proposes to predict the complex behavior of fluids in porous media based on advanced mathematic tools, especially Convolutional Neural Networks (CNN) or tools from Cheminformatics (QSPR – Quantitative Structure Property Relationship) and assess experimental predictions with micromodels employment. In its laboratories, IFPEN have a strong knowledge in micromodel experiments (transparent 2D porous micromodels) as so as in automatic learning methods. One of the objectives of this PhD consist in producing experimental databases for different porous media configurations. Then, the goal is to predict complex phenomena such as CO2 trapping in a given situation (trapping localization, trapping fraction, ganglia size, etc.), based on automatic learning. Then, obtained model inversion methods will be investigated; for example, determining what should be porous medium characteristics (porosity, structure, pore and grain distribution and size, etc.) for optimized CO2 sequestration. This PhD work will couple innovative aspects in both automatic learning and experiment with micromodel application and will also offer numerous perspectives in NET and beyond.
Prise de fonction :
Nature du financement
Précisions sur le financement
Présentation établissement et labo d'accueil
IFP Energies nouvelles is a French public-sector research, innovation and training center. Its mission is to develop efficient, economical, clean and sustainable technologies in the fields of energy, transport and the environment. For more information, see our WEB site.
IFPEN offers a stimulating research environment, with access to first in class laboratory infrastructures and computing facilities. IFPEN offers competitive salary and benefits packages. All PhD students have access to dedicated seminars and training sessions.
Site web :
Profil du candidat
Academic requirements University Master degree in Physics, Physical-chemistry
Language requirements English level B2 (CEFR)
Other requirements Experimental capabilities, Python knowlegde
Vous avez déjà un compte ?
Nouvel utilisateur ?
Vous souhaitez recevoir nos infolettres ?
Découvrez nos adhérents
ANRT
CASDEN
Aérocentre, Pôle d'excellence régional
Ifremer
Laboratoire National de Métrologie et d'Essais - LNE
Tecknowmetrix
SUEZ
Nokia Bell Labs France
TotalEnergies
ASNR - Autorité de sûreté nucléaire et de radioprotection - Siège
CESI
Institut Sup'biotech de Paris
Généthon
Groupe AFNOR - Association française de normalisation
ONERA - The French Aerospace Lab
MabDesign
MabDesign
PhDOOC
ADEME
-
EmploiRef. 131050Villejuif , Ile-de-France , FranceSupBiotech
Directeur des Laboratoires d'Enseignements (H/F)
Expertises scientifiques :Biotechnologie - Biologie
Niveau d’expérience :Confirmé
-
Sujet de ThèseRef. 129914AUBIERE , Auvergne-Rhône-Alpes , FranceUniversité Clermont Auvergne
Synthèse enzymatique d'hydroxycétones valorisables // Enzymatic synthesis of valuable hydroxyketones
Expertises scientifiques :Chimie - Biochimie - Biotechnologie