Où docteurs et entreprises se rencontrent
Menu
Connexion

Vous avez déjà un compte ?

Nouvel utilisateur ?

Analyse et étude expérimentale de structures capillaires pour atténuer l’influence des forces magnéto-gravitaires sur le refroidissement en hélium liquide des futurs aimants supraconducteur HTS // Analysis and experimental study of capillary structures to

ABG-128687 Sujet de Thèse
18/02/2025 Financement public/privé
CEA Paris-Saclay Laboratoire Cryogénie et Stations d’Essais
Saclay
Analyse et étude expérimentale de structures capillaires pour atténuer l’influence des forces magnéto-gravitaires sur le refroidissement en hélium liquide des futurs aimants supraconducteur HTS // Analysis and experimental study of capillary structures to
  • Energie
Energie, thermique, combustion, écoulements / Sciences pour l’ingénieur

Description du sujet

Avec la nécessité pour la physique de disposer de champs magnétiques de plus en plus élevés, le CEA est amené à développer et réaliser des aimants supraconducteurs qui permettront de produire des champs magnétiques de plus de 30 T. Le bobinage de ces électro-aimants est réalisé avec des matériaux supraconducteurs dont la résistance électrique est extrêmement faible aux températures cryogéniques (quelques Kelvins). Ils peuvent ainsi transporter de forts courants (>10 kA) tout en dissipant par effet Joule un minimum de chaleur. Le refroidissement à ces basses températures est obtenu grâce à l’utilisation d’hélium liquide. Or, l’hélium est diamagnétique. Ainsi les champs magnétiques vont induire des forces volumiques qui s’ajoutent ou s’opposent à la gravité au sein de l’hélium. Ces forces magnéto-gravitaires perturbent les phénomènes convectifs nécessaires au refroidissement des câbles supraconducteurs. Cela peut entrainer une élévation de leur température et une perte de leur état supraconducteur primordial pour leur bon fonctionnement. Afin de contourner ce phénomène, un système de refroidissement inédit en cryomagnétisme sera étudié. Ce système de refroidissement sera développé avec des caloducs dont le fonctionnement est basé sur les forces capillaires à priori indépendantes des forces magnéto-gravitaires induites par les forts champs magnétiques. Ces structures capillaires peuvent prendre plusieurs formes (micro-canaux, mousse, maille …), ainsi dans le cadre de la thèse ces différentes structures seront étudiées théoriquement puis expérimentalement, à la fois sans et en présence de forces magnétiques afin de déterminer les structures les plus adaptées aux aimants supraconducteurs du futur.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------

As physics requires increasingly higher magnetic fields, CEA is called upon to develop and produce superconducting magnets capable of generating magnetic field of more than 30 T. The windings of these electromagnets are made from superconducting materials whose electrical resistance is extremely low at cryogenic temperatures (a few Kelvins). This enables them to carry high currents (>10 kA) while dissipating a minimum of heat by Joule effect. Cooling at these low temperatures is achieved using liquid helium. But helium is diamagnetic. Magnetic fields will therefore induce volumetric forces that add to or oppose gravity within the helium. These magneto-gravity forces disrupt the convective phenomena required to cool the superconducting magnet. This can lead to a rise in their temperature and a loss of their superconducting state, which is essential for their proper operation. In order to circumvent this phenomenon, a new cooling system never used in cryomagnetism will be studied. This cooling system will be developed using heat pipes whose operation is based on capillary forces that are theoretically independent of the magneto-gravity forces induced by strong magnetic fields. These capillary structures can take several forms (microchannels, foam, mesh, etc.). In the framework of the thesis these different structures will be studied theoretically and then experimentally, both with and without magnetic forces, in order to determine the most suitable structures for the future superconducting magnets.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Pôle fr : Direction de la Recherche Fondamentale
Département : Institut de recherche sur les lois fondamentales de l’univers
Service : Département des Accélérateurs, de Cryogénie et de Magnétisme
Laboratoire : Laboratoire Cryogénie et Stations d’Essais
Date de début souhaitée : 01-10-2025
Ecole doctorale : PHENIICS (PHENIICS)
Directeur de thèse : BAUDOUY Bertrand
Organisme : CEA
Laboratoire : DRF/IRFU/DACM/LCSE

Nature du financement

Financement public/privé

Précisions sur le financement

Présentation établissement et labo d'accueil

CEA Paris-Saclay Laboratoire Cryogénie et Stations d’Essais

Pôle fr : Direction de la Recherche Fondamentale
Département : Institut de recherche sur les lois fondamentales de l’univers
Service : Département des Accélérateurs, de Cryogénie et de Magnétisme

Profil du candidat

Master 2 ou école d’ingénieur, avec des composantes en dynamique des fluides, thermodynamique. Intérêt pour les études expérimentales.
Partager via
Postuler
Fermer

Vous avez déjà un compte ?

Nouvel utilisateur ?