Marches aléatoires unipotentes dans les espaces homogènes // Unipotent random walks on homogeneous spaces
ABG-131094
ADUM-62972 |
Sujet de Thèse | |
16/04/2025 | Contrat doctoral |
Université de Montpellier
MONTPELLIER CEDEX 5 - France
Marches aléatoires unipotentes dans les espaces homogènes // Unipotent random walks on homogeneous spaces
- Mathématiques
Groupes de Lie, Probabilités, Systèmes dynamiques
Lie groups, Probabilty theory, Dynamical systems
Lie groups, Probabilty theory, Dynamical systems
Description du sujet
L'objectif de cette thèse est l'étude des propriétés de récurrence et d'équidistribution des marches aléatoires unipotentes dans les espaces homogènes de volume fini. Etant donné un groupe algébrique réel G (par exemple SL(d,R)) et un réseau L de G (par exemple SL(d,Z)), on cherchera donc à décrire le comportement asymptotique dans l'espace X= G/L des trajectoires de la chaine de Markov dont les incréments s'obtiennent en se déplaçant d'un point x de X à un point hx, où h est un élément aléatoire de G dont le support de la loi est contenu dans un sous-groupe unipotent H de G.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
The purpose of this PhD is the study of recurrence and equidistribution properties of unipotent random walks on finite volume homogeneous spaces. Given a real algebraic group G (for example SL(d,R)) and a lattice L in G (for example SL(d,Z)), we will therefore investigate the asymptotic behaviour in the space X=G/L of the trajectories of the Markov chain whose increments are obtained by moving from a point x in X to a point hx, where h is a random element in G whose law has support in a unipotent subgroup H of G.
The study of the asymptotic behaviour of the action of subgroups H of G in X=G/L, often called the theory of dynamics in homogenous spaces, finds its origins in questions from number theory. It grew in particular after the proof by Margulis of Oppenheim's conjecture in 1986. In the 90's, it witnessed a great development thanks to Ratner's theory which completely describes the closures of H-orbits when H is spanned by unipotent elements. Then, Shah conjectured that these results should be extendable to the case where the Zariski closure of H was spanned by unipotent elements. The case where this Zariski closure is semisimple is now well understood thanks to the work of Benoist and Quint. More recently, Eskin and Lindenstrauss described the stationary measures of random walks on X which are associated with a probability measure on G whose support spans a subgroup of G, with Zariski closure spanned by unipotent elements. The link between this metric result and the description of orbit closures remains to be established in general. The goal of this PhD is to develop a better understanding of the random walks which appear in this framework, in particular in case H has weak expansion properties.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Début de la thèse : 01/10/2025
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
The purpose of this PhD is the study of recurrence and equidistribution properties of unipotent random walks on finite volume homogeneous spaces. Given a real algebraic group G (for example SL(d,R)) and a lattice L in G (for example SL(d,Z)), we will therefore investigate the asymptotic behaviour in the space X=G/L of the trajectories of the Markov chain whose increments are obtained by moving from a point x in X to a point hx, where h is a random element in G whose law has support in a unipotent subgroup H of G.
The study of the asymptotic behaviour of the action of subgroups H of G in X=G/L, often called the theory of dynamics in homogenous spaces, finds its origins in questions from number theory. It grew in particular after the proof by Margulis of Oppenheim's conjecture in 1986. In the 90's, it witnessed a great development thanks to Ratner's theory which completely describes the closures of H-orbits when H is spanned by unipotent elements. Then, Shah conjectured that these results should be extendable to the case where the Zariski closure of H was spanned by unipotent elements. The case where this Zariski closure is semisimple is now well understood thanks to the work of Benoist and Quint. More recently, Eskin and Lindenstrauss described the stationary measures of random walks on X which are associated with a probability measure on G whose support spans a subgroup of G, with Zariski closure spanned by unipotent elements. The link between this metric result and the description of orbit closures remains to be established in general. The goal of this PhD is to develop a better understanding of the random walks which appear in this framework, in particular in case H has weak expansion properties.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Début de la thèse : 01/10/2025
Nature du financement
Contrat doctoral
Précisions sur le financement
Concours pour un contrat doctoral
Présentation établissement et labo d'accueil
Université de Montpellier
Etablissement délivrant le doctorat
Université de Montpellier
Ecole doctorale
166 I2S - Information, Structures, Systèmes
Profil du candidat
Le candidat doit avoir des connaissances profondes en mathématiques fondamentales, en particulier en géométrie différentielle, théorie des groupes et théorie des probabilités.
The applicant needs to have a deep knowledge of fundamental mathematics, in particular in differential geometry, group theory and probability theory.
The applicant needs to have a deep knowledge of fundamental mathematics, in particular in differential geometry, group theory and probability theory.
04/05/2025
Postuler
Fermer
Vous avez déjà un compte ?
Nouvel utilisateur ?
Besoin d'informations sur l'ABG ?
Vous souhaitez recevoir nos infolettres ?
Découvrez nos adhérents
Généthon
Ifremer
Laboratoire National de Métrologie et d'Essais - LNE
TotalEnergies
PhDOOC
MabDesign
CESI
CASDEN
Groupe AFNOR - Association française de normalisation
Tecknowmetrix
Nokia Bell Labs France
ANRT
ONERA - The French Aerospace Lab
ADEME
Aérocentre, Pôle d'excellence régional
SUEZ
ASNR - Autorité de sûreté nucléaire et de radioprotection - Siège
MabDesign
Institut Sup'biotech de Paris