Post-doc : Monitoring mobility patterns H/F
ABG-128505 | Emploi | Niveau d'expérience indifférent |
12/02/2025 | CDD 12 Mois | > 35 et < 45 K€ brut annuel |

- Mathématiques
Employeur
Si on vous dit… Prix Nobel ?
Top 10 mondial des dépôts de brevets pour le recyclage des plastiques ?
Pionnier de la recherche en captage/stockage du CO2 ?
Au cœur de de 100 partenariats industriels ?
La réponse est IFP Energies nouvelles (IFPEN) !
Venez contribuer à une recherche répondant aux enjeux énergétiques, disposant d'équipements de pointe.
Trouvez du sens en intégrant un collectif engagé au service de la transition écologique.
>>> Rejoignez-nous !
Nous sommes 1600 collaborateurs répartis sur 2 centres de recherche : Rueil-Malmaison (92 - proche Paris) & Solaize (69 - proche Lyon).
L'ouverture et la diversité font notre force.
Intégrez une entreprise inclusive favorisant l'emploi des personnes en situation de handicap.
Vivez l'égalité professionnelle IFPEN = 100 sur 100 sur l'index Egalité femmes-hommes.
Découvrez notre accord télétravail jusqu'à 2,5 jours par semaine.
IFP Energies nouvelles, ensemble pour développer aujourd'hui les innovations de demain.
Site web :
Poste et missions
Subject : Monitoring mobility patterns: detection of punctual anomalies and long-lasting disruptions
The objective of the post-doctorate is to create innovative methods that identify significant events for local authorities, particularly those not explained by predefined factors such as weather conditions. The approach will focus on two key dimensions: spatial and temporal, and it will be designed to apply to various modes of transportation, including public transportation, bicycles, cars, or the total sum of flows, whose data will be provided. Additionally, the framework aims to detect long-term changes in mobility behavior.
Given the absence of a comprehensive database of all potential traffic disturbances, the methodology will be unsupervised. However, the approaches can be validated using a defined set of known cases. Various methodologies can be employed, including statistical analysis, similarity-based techniques, or pattern mining.
The candidate will join an experienced research team in mobility analysis and traffic estimation with close connections to local authorities.
They will furthermore be part of the Mob Sci-Dat Factory project, in partnership with CEREMA, IGN-ENSG, INRIA, and Université Gustave Eiffel, which aims to improve methods for collecting, processing, and analyzing heterogeneous mobility data.
Mobilité géographique :
Profil
Compétences techniques et aptitudes
- Proficiency in Python is required
- The candidate must also demonstrate excellent written and verbal communication skills in English
- Knowledge of French is a plus
Diplôme(s), niveau d'études :
The candidate must hold a PhD in statistics, machine learning, transportation science or related discipline, with experience in anomaly detection.
For further information and to apply, please contact:
- Alexandre Lanvin: alexandre.lanvin@ifpen.fr
- Jean Charléty: jean.charlety@ifpen.fr
- Alexandre Chasse: alexandre.chasse@ifpen.fr
Department of Control, Signal and System, IFP Energies Nouvelles
Vous avez déjà un compte ?
Nouvel utilisateur ?
Vous souhaitez recevoir nos infolettres ?
Découvrez nos adhérents
Nokia Bell Labs France
Groupe AFNOR - Association française de normalisation
ADEME
MabDesign
Généthon
Aérocentre, Pôle d'excellence régional
Institut de Radioprotection et de Sureté Nucléaire - IRSN - Siège
Ifremer
Tecknowmetrix
TotalEnergies
Institut Sup'biotech de Paris
ANRT
PhDOOC
Laboratoire National de Métrologie et d'Essais - LNE
CASDEN
ONERA - The French Aerospace Lab
CESI
SUEZ
MabDesign