Mesure de la décohérence et de l’intrication quantique dans la photoémission attoseconde // Measuring quantum decoherence and entanglement in attosecond photoemission
ABG-130406 | Sujet de Thèse | |
03/04/2025 | Financement public/privé |
CEA Paris-Saclay Attophysique
Saclay
Mesure de la décohérence et de l’intrication quantique dans la photoémission attoseconde // Measuring quantum decoherence and entanglement in attosecond photoemission
- Physique
Interactions rayonnement-matière / Physique de l’état condensé, chimie et nanosciences / Physique atomique et moléculaire / Physique de l’état condensé, chimie et nanosciences
Description du sujet
Le projet de thèse est axé sur l'étude avancée de la dynamique de photoémission attoseconde. L'objectif est d'accéder en temps réel aux processus de décohérence induits, par exemple, par l'intrication quantique électron-ion. Pour ce faire, l’étudiant-e développera des techniques de spectroscopie attoseconde utilisant un nouveau laser Ytterbium à taux de répétition élevé.
Sujet détaillé :
Ces dernières années, des progrès spectaculaires ont été réalisés dans la génération d'impulsions attosecondes (1 as=10-18 s), récompensés par le prix Nobel 2023 [1]. Ces impulsions ultracourtes sont générées à partir de la forte interaction non linéaire entre des impulsions laser brèves et intenses et des jets de gaz [2]. Elles ont ouvert de nouvelles perspectives pour l'exploration de la matière à l'échelle de temps intrinsèque de l'électron : la spectroscopie attoseconde permet d'étudier en temps réel le processus quantique de photoémission et de filmer en 3D l'éjection du paquet d'ondes électronique [3, 4]. Cependant, ces études se sont limitées à des dynamiques pleinement cohérentes par manque d'outils expérimentaux et théoriques pour traiter la décohérence et l'intrication quantique. Récemment, deux techniques ont été proposées pour réaliser une tomographie quantique du photoélectron dans son état asymptotique final [5, 6].
L'objectif de ce projet de thèse est de développer la spectroscopie attoseconde afin d'accéder à l'évolution en temps réel de la décohérence et de l'intrication au cours de la photoémission. Les techniques tomographiques seront mises en œuvre sur la plateforme laser ATTOLab à l'aide d'une nouvelle source laser Ytterbium. Cette nouvelle technologie laser émergente offre une stabilité cinq fois supérieure et un taux de répétition dix fois supérieur à celui de la technologie actuelle Titane-Saphir. Ces nouvelles capacités représentent une avancée majeure dans le domaine et permettent, par exemple, d'utiliser des techniques de coïncidence de particules chargées pour étudier la dynamique de la photoémission et de l'intrication quantique avec une précision sans précédent.
Ce projet de thèse s'inscrit dans le cadre du réseau européen QU-ATTO (https://quatto.eu/), récemment financé, qui ouvre de nombreuses perspectives de collaboration avec des laboratoires européens. Des collaborations étroites sont notamment déjà en cours avec les groupes des Profs. Anne L’Huillier à Lund et Giuseppe Sansone à Fribourg. En raison de la règle de mobilité, les candidats ne doivent pas avoir résidé (travail, études) en France plus de 12 mois depuis août 2022.
L'étudiant recevra une solide formation en optique ultrarapide, physique atomique et moléculaire, science attoseconde, optique quantique, et acquerra une large maîtrise des techniques de spectroscopie XUV et de particules chargées.
Références :
[1] https://www.nobelprize.org/prizes/physics/2023/summary/
[2] Y. Mairesse, et al., Science 302, 1540 (2003)
[3] V. Gruson, et al., Science 354, 734 (2016)
[4] A. Autuori, et al., Science Advances 8, eabl7594 (2022)
[5] C. Bourassin-Bouchet, et al., Phys. Rev. X 10, 031048 (2020)
[6] H. Laurell, et al., Nature Photonics, https://doi.org/10.1038/s41566-024-01607-8 (2025)
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
The PhD project is centered on the advanced study of attosecond photoemission dynamics. The objective is to access in real time decoherence processes induced, e.g., by electron-ion quantum entanglement. To that aim, the young researcher will develop attosecond spectroscopy techniques making use of a new high repetition rate Ytterbium laser.
Detailed summary :
In recent years, there has been spectacular progress in the generation of attosecond (1 as=10-18 s) pulses, awarded the 2023 Nobel Prize [1]. These ultrashort pulses are generated from the strong nonlinear interaction of short intense laser pulses with gas jets [2]. They have opened new prospects for the exploration of matter at the electron intrinsic timescale. Attosecond spectroscopy allows studying in real time the quantum process of photoemission and shooting the 3D movie of the electron wavepacket ejection [3, 4]. However, these studies were confined to fully coherent dynamics by the lack of experimental and theoretical tools to deal with decoherence and quantum entanglement. Recently, two techniques have been proposed to perform a quantum tomography of the photoelectron in its final asymptotic state [5, 6].
The objective of the PhD project is to develop attosecond spectroscopy to access the full time evolution of decoherence and entanglement during the photoemission process. Quantum tomographic techniques will be implemented on the ATTOLab laser platform (https://iramis.cea.fr/en/lidyl/atto/attolab-platform/) using a new Ytterbium laser source. This novel laser technology is emerging, with stability 5 times higher and repetition rate 10 times higher than the current Titanium:Sapphire technology. These new capabilities represent a breakthrough for the field and allow, e.g., charged particle coincidence techniques, to study the dynamics of photoemission and quantum entanglement with unprecedented precision.
This PhD project is performed in the frame of a recently funded European Network QU-ATTO (https://quatto.eu/), providing an advanced training to 15 young researchers, and opening many opportunities of joint work with European laboratories. In particular, strong collaborations are already ongoing with the groups of Prof. Anne L’Huillier in Lund, and Prof. Giuseppe Sansone in Freiburg. Due to the Mobility Rule, candidates must not have resided (work, studies) in France for more than 12 months since August 2022.
The student will receive solid training in ultrafast optics, atomic and molecular physics, attosecond science, quantum optics, and will acquire a broad mastery of XUV and charged-particle spectroscopy techniques.
References :
[1] https://www.nobelprize.org/prizes/physics/2023/summary/
[2] Y. Mairesse, et al., Science 302, 1540 (2003)
[3] V. Gruson, et al., Science 354, 734 (2016)
[4] A. Autuori, et al., Science Advances 8, eabl7594 (2022)
[5] C. Bourassin-Bouchet, et al., Phys. Rev. X 10, 031048 (2020)
[6] H. Laurell, et al., Nature Photonics, https://doi.org/10.1038/s41566-024-01607-8 (2025)
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Pôle fr : Direction de la Recherche Fondamentale
Département : Institut rayonnement et matière de Saclay
Service : Service Laboratoire Interactions, Dynamique et Lasers
Laboratoire : Attophysique
Date de début souhaitée : 01-09-2025
Ecole doctorale : Ondes et Matière (EDOM)
Directeur de thèse : SALIERES Pascal
Organisme : CEA
Laboratoire : DRF/IRAMIS/LIDyL/ATTO
URL : https://iramis.cea.fr/en/lidyl/pisp/pascal-salieres-2/
URL : https://iramis.cea.fr/lidyl/atto/
URL : https://iramis.cea.fr/en/lidyl/atto/attolab-platform/
Sujet détaillé :
Ces dernières années, des progrès spectaculaires ont été réalisés dans la génération d'impulsions attosecondes (1 as=10-18 s), récompensés par le prix Nobel 2023 [1]. Ces impulsions ultracourtes sont générées à partir de la forte interaction non linéaire entre des impulsions laser brèves et intenses et des jets de gaz [2]. Elles ont ouvert de nouvelles perspectives pour l'exploration de la matière à l'échelle de temps intrinsèque de l'électron : la spectroscopie attoseconde permet d'étudier en temps réel le processus quantique de photoémission et de filmer en 3D l'éjection du paquet d'ondes électronique [3, 4]. Cependant, ces études se sont limitées à des dynamiques pleinement cohérentes par manque d'outils expérimentaux et théoriques pour traiter la décohérence et l'intrication quantique. Récemment, deux techniques ont été proposées pour réaliser une tomographie quantique du photoélectron dans son état asymptotique final [5, 6].
L'objectif de ce projet de thèse est de développer la spectroscopie attoseconde afin d'accéder à l'évolution en temps réel de la décohérence et de l'intrication au cours de la photoémission. Les techniques tomographiques seront mises en œuvre sur la plateforme laser ATTOLab à l'aide d'une nouvelle source laser Ytterbium. Cette nouvelle technologie laser émergente offre une stabilité cinq fois supérieure et un taux de répétition dix fois supérieur à celui de la technologie actuelle Titane-Saphir. Ces nouvelles capacités représentent une avancée majeure dans le domaine et permettent, par exemple, d'utiliser des techniques de coïncidence de particules chargées pour étudier la dynamique de la photoémission et de l'intrication quantique avec une précision sans précédent.
Ce projet de thèse s'inscrit dans le cadre du réseau européen QU-ATTO (https://quatto.eu/), récemment financé, qui ouvre de nombreuses perspectives de collaboration avec des laboratoires européens. Des collaborations étroites sont notamment déjà en cours avec les groupes des Profs. Anne L’Huillier à Lund et Giuseppe Sansone à Fribourg. En raison de la règle de mobilité, les candidats ne doivent pas avoir résidé (travail, études) en France plus de 12 mois depuis août 2022.
L'étudiant recevra une solide formation en optique ultrarapide, physique atomique et moléculaire, science attoseconde, optique quantique, et acquerra une large maîtrise des techniques de spectroscopie XUV et de particules chargées.
Références :
[1] https://www.nobelprize.org/prizes/physics/2023/summary/
[2] Y. Mairesse, et al., Science 302, 1540 (2003)
[3] V. Gruson, et al., Science 354, 734 (2016)
[4] A. Autuori, et al., Science Advances 8, eabl7594 (2022)
[5] C. Bourassin-Bouchet, et al., Phys. Rev. X 10, 031048 (2020)
[6] H. Laurell, et al., Nature Photonics, https://doi.org/10.1038/s41566-024-01607-8 (2025)
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
The PhD project is centered on the advanced study of attosecond photoemission dynamics. The objective is to access in real time decoherence processes induced, e.g., by electron-ion quantum entanglement. To that aim, the young researcher will develop attosecond spectroscopy techniques making use of a new high repetition rate Ytterbium laser.
Detailed summary :
In recent years, there has been spectacular progress in the generation of attosecond (1 as=10-18 s) pulses, awarded the 2023 Nobel Prize [1]. These ultrashort pulses are generated from the strong nonlinear interaction of short intense laser pulses with gas jets [2]. They have opened new prospects for the exploration of matter at the electron intrinsic timescale. Attosecond spectroscopy allows studying in real time the quantum process of photoemission and shooting the 3D movie of the electron wavepacket ejection [3, 4]. However, these studies were confined to fully coherent dynamics by the lack of experimental and theoretical tools to deal with decoherence and quantum entanglement. Recently, two techniques have been proposed to perform a quantum tomography of the photoelectron in its final asymptotic state [5, 6].
The objective of the PhD project is to develop attosecond spectroscopy to access the full time evolution of decoherence and entanglement during the photoemission process. Quantum tomographic techniques will be implemented on the ATTOLab laser platform (https://iramis.cea.fr/en/lidyl/atto/attolab-platform/) using a new Ytterbium laser source. This novel laser technology is emerging, with stability 5 times higher and repetition rate 10 times higher than the current Titanium:Sapphire technology. These new capabilities represent a breakthrough for the field and allow, e.g., charged particle coincidence techniques, to study the dynamics of photoemission and quantum entanglement with unprecedented precision.
This PhD project is performed in the frame of a recently funded European Network QU-ATTO (https://quatto.eu/), providing an advanced training to 15 young researchers, and opening many opportunities of joint work with European laboratories. In particular, strong collaborations are already ongoing with the groups of Prof. Anne L’Huillier in Lund, and Prof. Giuseppe Sansone in Freiburg. Due to the Mobility Rule, candidates must not have resided (work, studies) in France for more than 12 months since August 2022.
The student will receive solid training in ultrafast optics, atomic and molecular physics, attosecond science, quantum optics, and will acquire a broad mastery of XUV and charged-particle spectroscopy techniques.
References :
[1] https://www.nobelprize.org/prizes/physics/2023/summary/
[2] Y. Mairesse, et al., Science 302, 1540 (2003)
[3] V. Gruson, et al., Science 354, 734 (2016)
[4] A. Autuori, et al., Science Advances 8, eabl7594 (2022)
[5] C. Bourassin-Bouchet, et al., Phys. Rev. X 10, 031048 (2020)
[6] H. Laurell, et al., Nature Photonics, https://doi.org/10.1038/s41566-024-01607-8 (2025)
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Pôle fr : Direction de la Recherche Fondamentale
Département : Institut rayonnement et matière de Saclay
Service : Service Laboratoire Interactions, Dynamique et Lasers
Laboratoire : Attophysique
Date de début souhaitée : 01-09-2025
Ecole doctorale : Ondes et Matière (EDOM)
Directeur de thèse : SALIERES Pascal
Organisme : CEA
Laboratoire : DRF/IRAMIS/LIDyL/ATTO
URL : https://iramis.cea.fr/en/lidyl/pisp/pascal-salieres-2/
URL : https://iramis.cea.fr/lidyl/atto/
URL : https://iramis.cea.fr/en/lidyl/atto/attolab-platform/
Nature du financement
Financement public/privé
Précisions sur le financement
Présentation établissement et labo d'accueil
CEA Paris-Saclay Attophysique
Pôle fr : Direction de la Recherche Fondamentale
Département : Institut rayonnement et matière de Saclay
Service : Service Laboratoire Interactions, Dynamique et Lasers
Profil du candidat
Master degree Fundamental Physics
Postuler
Fermer
Vous avez déjà un compte ?
Nouvel utilisateur ?
Besoin d'informations sur l'ABG ?
Vous souhaitez recevoir nos infolettres ?
Découvrez nos adhérents
TotalEnergies
MabDesign
ANRT
CASDEN
Généthon
Institut Sup'biotech de Paris
ADEME
Tecknowmetrix
ONERA - The French Aerospace Lab
Nokia Bell Labs France
CESI
MabDesign
Laboratoire National de Métrologie et d'Essais - LNE
Groupe AFNOR - Association française de normalisation
Ifremer
Aérocentre, Pôle d'excellence régional
PhDOOC
ASNR - Autorité de sûreté nucléaire et de radioprotection - Siège
SUEZ
-
EmploiRef. 130080Paris , Ile-de-France , FranceAgence Nationale de la Recherche
Chargé ou chargée de projets scientifiques bioéconomie H/F
Expertises scientifiques :Biochimie
Niveau d’expérience :Confirmé
-
Sujet de ThèseRef. 130176Strasbourg , Grand Est , FranceInstitut Thématique Interdisciplinaire IRMIA++
Schrödinger type asymptotic model for wave propagation
Expertises scientifiques :Mathématiques - Mathématiques